

Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method)

Version 12.3 (30.12.2024, Document History, see page 106)

Check for latest version of this Method under https://www.quppe.eu; older versions: obsolete versions

Authors: M. Anastassiades; A.-K. Schäfer; E. Eichhorn; D. I. Kolberg; H. Dias; A. Benkenstein; S. Zechmann; D. Mack; C. Wildgrube; A. Barth; B. Sauer; I. Sigalov; S. Goerlich; D. Dörk; G. Cerchia

EU Reference Laboratory for pesticides requiring Single Residue Methods (EURL-SRM)

Contact: CVUA Stuttgart, Schaflandstr. 3/2, DE-70736 Fellbach, Germany, www.eurl-pesticides.eu; EURL@cvuas.bwl.de

Note: Changes from V12.2 to V12.3 are highlighted in yellow Scope and Short Description..... 2. 3. Chemicals..... 5.2. Extraction / Freeze-Out / Centrifugation / Cleanup / Filtration 8.

1. Scope and Short Description

A method is described for the residue analysis of very polar, non-QuEChERS-amenable, pesticides in foods of plant origin such as fruits, vegetables, cereals, dry pulses, oilseeds and nuts as well as in honey.

Residues are extracted from the test portion following water adjustment and addition of acidified methanol. In the case of cereals, pulses, nuts and oilseeds, EDTA is added for the complexation of metal ions, such as calcium and magnesium, which can affect the analysis of certain compounds (e.g. Glyphosate and AMPA). The mixture is centrifuged, filtered and directly analyzed by LC-MS/MS. Various LC- or IC-MS/MS methods allowing simultaneous analysis of different combinations of pesticides are provided. Quantification is in most cases performed employing isotope labeled analogues of the target analytes as internal standards (IL-ISs). So far available, these IL-ISs are added directly to the test portion at the beginning of the procedure to compensate for any factors having an influence on the recovery-rates such as volume-deviations, analyte losses during sample preparation as well as matrix-effects during measurement. Due to the simplicity of the procedure strong matrix-effects are frequently observed.

Shortcut-Links to useful information

- Flow Chart QuPPe-PO-Method at a glance (procedure for most commodities)
- Flow Chart QuPPe-PO-Method at a glance (procedure for cereals, pulses, nuts and oilseeds)
- Pipetting Scheme (exemplary) Preparation of Calibration Standards
- Pipetting Scheme (exemplary) Standard-Additions-Approach
- Scope Overview- LC-Methods covering ESI-pos. Analytes
- Scope Overview LC-Methods covering ESI-neg Analytes
- General hints on analytes to avoid pitfalls
- Calibration and Calculations
- Analyte Stability
- Performance Data
- Conversion Factors (between purchased standards and target analytes)
- Analyte Stock and Working Solutions (exemplary)
- Exemplary Providers of IL-ISs (Isotopically Labelled Internal Standards)
- IL-IS-Working Solutions (exemplary)
- Water Addition Overview

How to Cite (proposal):

Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement - I. Food of Plant Origin (QuPPe-PO-Method) – Version 12.3 (published on EURL-SRM website on July 23, 2021); M. Anastassiades; A.-K. Schäfer; E. Eichhorn; D. I. Kolberg; H. Dias; A. Benkenstein; S. Zechmann; D. Mack; C. Wildgrube; A. Barth; B. Sauer; I. Sigalov; S. Goerlich; D. Dörk and G. Cerchia.

URL: https://www.quppe.eu/quppe_doc.asp

2. Apparatus and Consumables

2.1. Powerful sample processing equipment,

for milling samples. For fruits and vegetables, e.g. Stephan UM 5 or Retsch200 by Retsch Grindomix GM 300 or Vorwerk-Thermomix TM31-1. For dry commodities such as cereals, e.g. ZM 200 by Retsch equipped with a 0.5 mm sieve.

2.2. Plastic tub,

for filling-in liquid nitrogen to immerse the samples prior to milling. e.g. 20 to 40 L polypropylene or polyethylene tub with handles. Styrofoam boxes are also suitable. Take precautions when working with liquid nitrogen.

2.3. 50 mL centrifuge tubes with screw caps,

e.g.: a) reusable 50 mL Teflon® centrifuge tubes with screw caps (e.g. Nalgene/Rochester, USA; Oak-ridge, article-no. 3114-0050) or b) disposable 50 mL centrifuge tubes (e.g. Sarstedt / Germany, 114x28 mm, PP, article-no. 62.548.004).

2.4. 10 mL centrifuge tubes with screw caps,

for the d-SPE step (5.2.5), e.g.: disposable 10 mL PP-tubes by Simport/Beloeil (Canada), article-no. T550-10AT.

2.5. Automatic pipettes,

suitable for handling volumes of 10 to 100 μ L, 200 to 1000 μ L and 1 to 10 mL.

2.6. 10 mL solvent-dispenser,

for the acidified methanol (3.6).

2.7. Mechanical shaker,

suitable for 50 mL-centrifuge tubes, e.g. Geno/Grinder® 2010; SPEX® SamplePrep.

2.8. Water Bath,

adjustable to at least 80°C and automatically shaking.

2.9. Centrifuge,

suitable for the centrifuge tubes employed in the procedure (2.3) and capable of achieving > 3,000 g. E.g. Rotanta 460 by Hettich, Tuttlingen/Germany. Centrifuges capable of achieving higher centrifugal forces and of refrigerating the sample during centrifugation (e.g. Avanti JXN-26 by Beckman Coulter, Brea/USA) are to be preferred.

Note:

- Higher relative centrifugal forces (e.g. RCFs > 10,000 g) and cooling during centrifugation (e.g. to -10°C) are beneficial by causing increased precipitation of matrix components. Check centrifuge tubes for suitability for higher velocities.

2.10. Disposable syringes,

suitable to the filters used; e.g. 2 or 5 mL disposable polypropylene syringes with luer tip by Macherey-Nagel, Düren / Germany (Ref. 729100 and 729101 respectively). These are suitable for the syringe filters listed below (2.11).

2.11. Disposable syringe filters,

e.g. . Ø 25 mm CHROMAFIL® filters and 0.2 μ m pore size filters of the following materials: Hydrophilized polytetra-fluoroethylene (H-PTFE) or Cellulose Mixed Ester or Polyester (Ref. No. 729245, 729006 and 729021 respectively) all by Macherey-Nagel, Düren / Germany. 0.45 μ m pore size filters of the above types (Ref. No. 729246 H-PTFE) may be attached in front of the 0.2 μ m filters if the latter get clogged when used directly. In case of filter-clogging during

honey extracts filtration, filters with 5.0 μ m pore sizes (e.g. Rotilab® PTFE filters by ROTH Ref. No. SE4M075I99) may be used for pre-filtration (or even instead of the filters with smaller pore-sizes), as pollen grains are typically > 10 μ m in diameter.

Note:

- Check filters for any contamination with analytes of interest. Variable and in some cases significant levels of Perchlorate, and Chlorate were detected in the above-mentioned polyester filters, while Phosphonic acid was detected in the H-PTFE filters. For testing the suitability of the filters consider a quasi worst-case scenario, where filters are clogged quickly so that only a small volume of the extract (e.g. 200 μL) is passed through each filter. Severe clogging was for example observed with industrially milled cereals and well as in extracts of pears and pineapples. Hints on how to reduced clogging can be found in chapters 5.2.4 and 5.2.6.

2.12. Ultrafiltration filters,

5 or 10 kDa molecular weight cutoff filters suitable for centrifuges, e.g. Vivaspin® 6 mL 5 kDa entailing Polyethersulfone membranes OR Amicon® Ultra-15 10K entailing Ultracel® low binding regenerated cellulose.

2.13. Autosampler vials,

suitable for LC auto-samplers, e.g. Vials Screw top 2 mL Cat No. 9502S-PP-CLEAR, 12x32 mm MicroSolv Technology Corporation (MTC), USA; Lids for plastic vials: Lid G9-L/Sil-CS Art.-No. 2.301398-Blau WE13989, Ziemer GmbH, Langerwehe / Germany

Note:

- The use of plastic vials is highly recommended as several of the compounds covered by this method (e.g. Phosphonate, Nicotine, Paraquat, Diquat, Streptomycin and Glyphosate)¹ tend to interact with glass-surfaces. Such interactions with glass surfaces are typically more pronounced in solutions consisting of aprotic solvents (e.g. acetonitrile). Increasing water content and/or acidity typically reduces such interactions. Percent losses due to such interactions are typically higher at low concentrations.

2.14. Volumetric flask with stoppers,

for the preparation of stock and working solutions, e.g. 20 mL; 25 mL; 50 mL, 100 mL glass flasks.

Note:

- The use of plastic flasks and stoppers is highly recommended as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

2.15. Screw-cap storage vessels,

for storage of sample extracts or storage of stock and working solutions, e.g. 20 mL.

Note:

- The use of plastic flasks and stoppers is highly recommended as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under 2.13).

2.16. LC-MS/MS instrumentation,

equipped with ESI source and appropriate columns, see details in chapters 5.6.2 to 5.6.245.6.23.

2.17. IC-MS/MS instrumentation,

equipped with ESI source and appropriate columns, see details in chapters 5.6.24.

¹ The list of compounds requiring plastic vessels is not comprehensive (this remark applies to the entire document).

3. Chemicals

Unless otherwise specified, use reagents of recognized analytical grade. Take every precaution to avoid possible contamination of water, solvents, sorbents, inorganic salts, etc.

3.1. Water (deionized),

for water additions to the samples

3.1. Water, ultrapure

e.g. prepared by a laboratory water purification system. Commercially available MS-quality water can be used for LC-MS/MS mobile phases and IC-quality water for IC-MS/MS mobile phases.

3.2. Methanol at least HPLC quality,

for the preparation of mobile phases preferably use MS-quality methanol.

3.3. Acetonitrile at least HPLC quality,

for the preparation of mobile phases preferably use MS-quality acetonitrile.

3.4. Formic acid (concentrated; > 98%),

for the preparation of mobile phases preferably use MS-quality formic acid.

3.5. Acetic acid (concentrated; >98%),

for the preparation of mobile phases preferably use MS-quality acetic acid.

3.6. Acidified methanol,

for the extraction of the majority of samples, prepared by pipetting 10 mL formic acid (3.4) into a 1000 mL volumetric flask and filling up to volume with methanol (3.2).

3.7. Hydrochloric acid 1M,

aqueous, for the preparation of HCI-methanol mix (3.8).

3.8. HCl-methanol mix,

for the extraction of Diquat and Paraquat in most types of commodities, prepared by filling 500 mL methanol into a 1000 mL volumetric flask and filling up to volume with 1M hydrochloric acid (3.2).

3.9. C18 sorbent (ODS-sorbent),

e.g. Polygoprep 30-300 μm Macherey-Nagel GmbH & Co KG/Düren (Germany), article-no. 711720.100).

3.10. Citric acid-monohydrate (p.a.)

3.11. Dimethylamine,

e.g. 40 % by Fluka (article-no. 38940).

3.12. Ammonium formate (p.a.)

3.13. Ammonium citrate-tribasic, anhydrous (p.a.)

3.14. Sodium hydroxide (p.a.)

3.15. Di-Sodiumtetraborate-decahydrate (p.a.)

3.16. Ethylenediaminetetraacetic acid tetrasodium

e.g. tetrasodium <u>di</u>hydrate salt (CAS Number 10378-23-1): E6511 Sigma Aldrich (MW=416.20)
OR tetrasodium <u>tetra</u>hydrate salt (CAS No.: 13235-36-4): 34103-M EMD Millipore/Merck (MW=452.23)

3.17. 10% aqueous EDTA solution,

prepared by weighing 15.85 EDTA tetrasodium tetrahydrate (OR 14.59 g EDTA tetrasodium dihydrate) into a 100 mL volumetric flask with stopper, dissolving it in 80 mL water and filling up to 100 mL with water. This solution contains 10% (w/v) EDTA tetra-anion.

3.18. Dry ice,

technical grade can be used; periodically check that it does not contain compounds of interest at relevant levels.

3.19. Pesticide Standards,

of known purity.

3.20. Pesticide stock solutions,

e.g. 1 mg/mL solutions of pesticide standards (3.19) in a water miscible solvent. Suggestions of solvents suitable for the preparation of stock solutions can be found in **Table 45**.

Notes:

Keep in mind that some standards are sold as salts or hydrates. Some exemplary conversion factors to be applied between typical standards and the analytes are shown in Table 44. Keep solutions in <u>plastic vessels</u> as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under 2.13).

3.21. Pesticide working solutions / mixtures,

prepared at appropriate concentrations by diluting pesticide stock solutions (3.20) of one or more pesticides with water-miscible solvents as required for the spiking of samples in recovery experiments (5.4) or for the preparation of calibration standards (5.5). Suggestions of solvents for preparing stock solutions can be found in **Table 45**.

Notes:

- Keep solutions in <u>plastic vessels</u> as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).

3.22. Internal Standards (ISs),

Exemplary sources are shown in **Table 46**. Check whether the ISs contain native compounds at levels, which would lead to false positives or quantification errors.

3.23. IS-stock solutions,

e.g. 1 mg/mL solutions of ISs (3.22) in a water miscible solvent (e.g. methanol, acetonitrile, water or mixtures thereof). For solvent-suggestions see **Table 45** in the ANNEX.

Notes:

- Keep solutions in **plastic vessels** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).
- In general, the absolute concentrations of the IL-IS-solutions are not important as long as the IL-IS-concentration in the final extract is high enough to produce a well measurable signal that is not relevantly disturbed by co-eluting matrix components.
- An IL-IS standard with a relatively **low purity may be still acceptable** as long as the **content of native analyte** (irrespective on whether it was initially present as impurity or formed in the working solutions during storage) is **low enough** to exclude false positive results and to ensure that any influence on quantification of positive results is negligible. Some examples where care is needed to avoid formation of the native analyte from the IL-IS are N-Acetyl-Glyphosate (acetyl-

 D_3), that may de-acetylate into native Glyphosate, Fosetyl- D_5 , that tends to hydrolyse to native Phosphonic acid (see **5.6.1-1c** under Hints on Method 1.2). As far as the presence of original impurities is concerned, it was observed that Maleic Hydrazide D_2 standards typically contain a small, but relevant, share of the native compound (see **2.e**) **5.6.9**), whereas fosetyl D_5 was found to contain relevant amounts of native Phosphonic acid (see **1.c**).

- For quantification purposes, it is of foremost importance that the ratio between the absolute IL-IS amount added to the sample prior to extraction (or to the isolated aliquot of the sample extract) and the absolute amount of IL-IS added to the calibration standard solutions is known as it is used in calculations.

3.24. IS-working solution I (IS-WSIn-1) for spiking samples prior to extraction,

prepared at appropriate concentrations by diluting IS-stock solutions (3.23) of one or more ISs with water-miscible solvents. Suggestions for solvents are shown in **Table 45** and suggestions for the concentrations in **Table 47**.

Notes:

- Keep solutions in **plastic vessels 2.15** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).
- In presence of water and especially at high pH levels, Phosphonic acid ¹⁸O₃ will gradually convert to ¹⁸O₂¹⁶O₁, ¹⁸O₁¹⁶O₂ and eventually of ¹⁶O₃ (native) Phosphonic acid. The ¹⁸O₃ Phosphonic acid standard solution provided by the EURLs should be preferably diluted in acetonitrile, where it was shown to be stable for long periods.

3.25. IS-working solution II (IS-WSIn-2) for preparation of calibration standards,

prepared at appropriate concentrations by diluting IS-WSln-1 (3.24) with water-miscible solvents. Suggestions for solvents are shown in **Table 45** and for concentrations in **Table 47**.

Notes:

- Keep solutions in **plastic vessels** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.13**).
- For short term usage (e.g. up to one month) the IL-IS of Phosphonic acid can be diluted in acidified methanol (3.6).

3.26. LC-MS/MS mobile phases and other consumables,

see details in chapters 5.6.2 to 5.6.23.

3.27. IC-MS/MS mobile phases and other consumables,

see details in chapter 5.6.24.

4. Disclaimer

This method refers to several trade names of products and instruments which are commercially available and suitable for the described procedure. This information is given for the convenience of the users of this method and does not constitute an endorsement by the EURL of the products named. The application of this method may involve hazardous materials, operations and equipment. It is the responsibility of the users of this method to establish appropriate safety and health practices prior to use. Any consumables and chemicals used in the procedure should be periodically checked, e.g. through reagent blank tests, for any relevant levels of the analytes of interest.

5. Procedure

5.1. Sample preparation

To obtain representative test-portions from the laboratory sample, proceed as required by the valid regulations and guidelines.

Fruits and vegetables are preferably milled cryogenically (e.g. using dry ice). This is done to reduce analyte degradation and particle sizes, with the latter resulting in improved homogeneity and residue accessibility. One possibility

for cryogenic milling is to cut large units coarsely to ca 3x3 cm pieces, freeze them and then mill them for ca. 1-2 min with a powerful mill. Then add dry ice (ca. 150-200 g per 500 g sample) and continue milling until barely any carbon dioxide fumes are observed. Alternatively fill a plastic or polystyrene container with a ca 5-10 cm thick layer of liquid nitrogen and immerse the sample pieces into liquid nitrogen. When completely frozen transfer the material into a powerful knife mill and grind at high speed until it gets a free flowing snow-like consistency. If necessary crush large units with a hammer before milling. If the material starts defrosting during milling, add some more liquid nitrogen or dry ice and continue milling as described above.

Dry commodities (e.g. cereals, pulses) are intensively milled to reduce particle size and improve the accessibility of residues enclosed in the interior of the materials. Particle sizes (e.g. <500 μm) are preferable. The larger the particles are the longer the extraction times required to achieve quantitative extraction of systemically distributed compounds. Ultra centrifugal mills with 500 μm sieves were found to be suitable for this purpose. Addition of dry ice during milling (e.g. at a sample: dry ice ratio of 2:1) reduces heat. The use of knife mills is also possible but prolonged milling times are needed to reduce the size of particles. Add some dry ice periodically to reduce heat formation. Alternatively a two stage milling can be helpful. For this a representative portion of the first milling step is transferred to a second smaller mill and homogenized further.

Dry and oily commodities (e.g. oilseeds and nuts) tend to form a thick paste that prevents proper milling and is difficult to handle, when using knife mills at room temperature. Milling with ultra centrifugal mills typically leads to a clogging of the ring-sieve. For such materials cryogenic grinding with a powerful knife mill is recommended. Precool the mill with dry ice and then mill the material at a sample to dry ice ratio of ca 2:1 until a fine powder is obtained. Keep temperature low to avoid that the material becomes clumpy and thus more difficult to handle. Alternatively immerse the sample in a plastic or polystyrene container containing liquid nitrogen. When completely frozen transfer it into a powerful knife mill and grind until a fine powder is obtained. Do not mill too long as the material with thaw and become clumpy and thus more difficult to handle.

For **dried fruits and similar commodities** (~15 to \leq 40% water content) the following procedure is proposed: Weigh 500 g of frozen dried fruits, add X g* of cold water (see

Table 1) and homogenize the mixture using a strong mixer (2.1), if possible with addition of dry ice to prevent or slow-down any chemical and enzymatic reactions (3.18). Weigh Y g^* of homogenate (see

Table 1; corresponding to 5 g sample).

Table 1: Weight of dried fruits required for slurry homogenization and analytical portions of rehydratized homogenates to be employed for analysis

Moisture content of product	Water amount added	Weight of analytical portion					
	(X g)	(Y g; corresponding to 5 g of original dry sample)					
~15 to <25 %	900 g	14 g					
25 to <35 %	850 g	13.5 g					
≥35 to 40 %	800 g	13 g					

Alternatively, immerse the sample material in a plastic or polystyrol container containing liquid nitrogen. When completely frozen transfer it into a powerful knife mill and grind until a fine powder is obtained. Do not mill too long and quickly transfer the frozen powder into a storage container and place it into the freezer to avoid that it becomes clumpy and more difficult to handle.

For freeze-dried fruit and vegetables homogenize with a high speed knife mill preferably adding dry ice to keep the sample cool. Thereof 2 g sample may be employed for analysis (as in the case of spices, herbs and other extract-rich commodities).

5.2. Extraction / Freeze-Out / Centrifugation / Cleanup / Filtration

A flow chart of the **analytical procedure** is shown in Figure 1 (for most commodities) and in Figure 2 (for pulses, nuts and oilseeds)

5.2.1. Weighing of analytical portions

Weigh a representative analytical portion (ma) of the sample homogenate (5.1) into a 50 mL centrifuge tube (2.3). In case of fresh fruits and vegetables and juices weigh 10 g \pm 0.1 g of the homogenized sample. In case of cereals, dried pulses, oilseeds, nuts, dried fruits, dried vegetables, dried mushrooms and honey weigh 5 g \pm 0.05 g of the homogenates. In case of dry fruits rehydrated according to 5.1, weigh Y g (e.g. 13.5 g \pm 0.1 g, see

Table 1) of the re-hydrated and homogenized material (corresponding to 5 g sample). Smaller analytical portions may have to be used for extract-rich commodities, such as spices, herbs or fermented products, or commodities with very high water-absorbing capacity not allowing proper extraction.

5.2.2. Adjustment of water content

For **commodities with** ≥ **80%** of **natural moisture**, water adjustment to 10 mL is not essential and may be skipped when appropriate ISs are employed before any aliquotation. If no IS is used, **add water (3.1)**, as indicated in **Table 48** to minimize volumetric errors. Continue with step **5.2.3.**

For **commodities with < 80% of natural moisture** (except honey, chia seeds and lineseeds, see notes), **add water** (3.1) to the analytical portion (5.2.1) to reach a total water content of approx. 10 g as indicated in **Table 48**. No water adjustment is needed where re-hydrated commodities (see 5.1) are employed. Continue with step 5.2.3.

Notes:

- Keep in mind that the water volume adjustments in **Table 48** are approximate.
- In the case of **honey**, it needs to be taken into account, that sugars completely dissolve in the methanol/water mixture and that they contribute to the volume. Instead of adding 9 mL of water (to account for ~1 mL of water contained in honey with ~20% moisture content), the amount of water to be added is 7.5 mL.
- For oilseeds, nuts and pulses the water contained in the aqueous EDTA solution (added during the extraction step (5.2.3) is also considered in the overall water content. Therefore 9 mL of water + 1 mL of aqueous EDTA solution are added in total. See also Table 48.
- In the case of **chia seeds**, **psyllium husk and lineseeds (flaxseeds)** adding water directly to the samples leads to a soaking and the formation of a gellike layer, which hinders the accessibility of residues. To suppress this phenomenon, change the order of solvent addition as follows. First add 10 mL acidified methanol (3.6) and 100 μL formic acid (3.4), shake shortly, and then add the 9 mL water and the 1 mL EDTA solution and continue with 15 min shaking as described under **5.2.3**. Then continue with step **5.2.4-(2)** or **(3)** and further with step **5.2.5-(2)**. Similarly, for the extraction of **Diquat** and **Paraquat**, first add 10 mL HCl-methanol mix (3.8), shake shortly, and then add 10 mL water and continue with 15 min shaking as described under **5.2.3**. Then continue with step **5.2.4-(2)** or **5.2.4-(3)** and further with step **5.2.5-(2)**.

5.2.3. Extraction

A) General procedure

- (1) For all commodities of plant origin except cereals, pulses, nuts and oilseeds (Figure 1): Add 10 mL acidified methanol (3.6) and 100 μL (or another appropriate small volume) of the IS-WSIn-1 (3.24) containing isotopically labeled analogues of the analytes of interest (added IS mass = m_{IS} sample). Close the tube and shake vigorously for 1 to 15 min by hand or a mechanical shaker.
- **For cereals, pulses, nuts and oilseeds (Figure 2):** Add 10 mL acidified methanol (**3.6**) and 100 μL (or another appropriate small volume) of the IS-WSIn-1 (**3.24**) containing isotopically labeled analogues of the analytes of interest (added IS mass = m_{IS} and agitate shortly to distribute the ISs. Add an extra amount of 100 μL formic acid (**3.4**). Close the tube and shake for a few seconds to distribute the acid and allow proteins to coagulate. Add 1 mL 10% aqueous EDTA solution (**3.17**) and shake for 15 min by an automatic shaker. For chia seeds and lineseeds please refer to the notes under **5.2.2**. Where no automatic shaker is available, dry

products may be shaken for 1 min by hand followed by a soaking period of 15 min and a subsequent second 1 min vigorous shaking by hand.

Notes:

- Where no IL-ISs are used the aim should be to reach a total volume of the liquid phase as close as possible to 20 mL. This volume will mainly consist of the water naturally contained in the sample, the water added during the procedure (including that of the EDTA solution), the extraction solvent added, the IS solution added as well as the extra formic acid added. A volume contraction is also taking place and is partly matched by the IS and the formic acid. Further alternatives to avoid errors due to volumetric deviations are calibrations that compensate for recovery, such as standard additions to sample portions and procedural calibrations using a suitable blank matrix. The 20 mL volume of the extractant corresponds to 0.5 g / 0.25 g sample per mL extract if 10 g / 5 g sample are used. Where the raw extract is diluted with acetonitrile for cleanup purposes (see 5.2.5-(2) concerning pulses, oilseeds and nuts) the final concentration in the extract is reduced to 0.125 g/mL.
- For screening purposes, the IS can be alternatively added to a sample extract aliquot (e.g. the 1 mL aliquot transferred to the autosampler vial, see below), assuming that 1 mL extract entails exactly 0.5 or 0.25 or 0.125 g sample equivalents, see above. This way, the added amount of IS per sample can be drastically reduced (e.g. 20-fold if added to 1 mL extract). The IS added at this step will compensate for matrix effects including retention-time shifts but not for recovery and volume deviations during extraction. The quantitative result should therefore be considered tentative. For more accuracy, samples should be re-extracted with the IS being added to the analytical portion before aliquotation.
- Particle size of dry products (e.g. cereals, pulses) plays an important role in analyte extractability. If a considerable fraction of particles exceed 500 μm, shaking or soaking times may have to be extended, otherwise the extraction will need to involve additional breakup of the sample particles, e.g. by the use of a high speed dispenser (e.g. Ultra Turrax).
- The addition of EDTA is highly recommended when targeting analytes showing poor recoveries in absence of EDTA. Affected are compounds with a tendency to form complexes with metals, such as Glyphosate, Glufosinate and their metabolites. If affected analytes are not targeted, EDTA addition may be skipped adding 10 rather than 9 mL of water.
- For **Diquat** and **Paraquat**, the addition of the ILIS directly to a dry matrix may reduce the IL-IS recovery, thus leading to overestimated results.

B) Procedure for Paraquat and Diquat (Figure 3)

For the analysis of Paraquat and Diquat add 10 mL of HCl-methanol mix (3.8), to the water-adjusted analytical portion (from 5.2.2), add 100 μ L (or another appropriate small volume) of the IS-WSln-1 (3.24) containing isotope-labeled analogues of Paraquat and Diquat (added IS mass = m_{IS}^{sample}). Close tube and shake vigorously for 15 min by a mechanical shaker.

Notes:

- Extractions with the normal QuPPe solvent (methanol containing 1% formic acid) at room temperature lead to poor extraction yields. Poor extraction yields are typically corrected for by the IL-IS, but this approach is associated with a high risk of false negatives, which limiting its suitability for screening purposes.
- Extractions with the previously published solvent (1:1 mixture of methanol + aqueous HCl 0.1M)², resulted in satisfactory recoveries of Paraquat and Diquat from various fruits and vegetables as well as cereals, but the recoveries from more challenging commodities, such as pulses and oily seeds remained poor.
- Extracting with the HCl-methanol mix (3.8), containing a higher concentration of HCl, ensures much higher yields (absolute recoveries) but the yields/recoveries vary depending on the matrix. In some cases, absolute recoveries may even fall below 50% with Paraquat tending to show lower absolute recoveries than diquat. The results of numerous experiments suggest that Diquat and Paraquat, regardless if incurred or spiked (native or IL-IS), enter into a dynamic equilibrium with the matrix, with the recovery rates being defined by the affinity of the analytes towards the matrix under the selected extraction conditions. As the IL-ISs behave in an equivalent way as the native analytes (incurred or spiked), they can very well correct for analyte losses caused by them attaching to the matrix surface. A precondition is that the signals of both (native analyte and IL-IS) remain well measurable. Exemplary commodities for which poor recoveries have been observed include lineseed, dried pulses (especially of dark colour), bananas, potatoes with soil-residues, as well as other products that may be contaminated with dust or soil, e.g. spices, root vegetables.
- Matrices causing recovery drop or strong signal suppression will increase the risk of false negatives. Monitoring the IL-IS signal is therefore It is therefore an important QC-measure to minimize the occurence of false negative results.
- Where abs. recoveries fall below the acceptable level of 30% (SANTE/11312/2021), it is recommended to lower the sample weight to 2 g.

² Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses.

5.2.4.Freeze-Out and Centrifugation

Depending on the available centrifugation equipment there is various options, e.g.:

- (1) Ambient centrifugation: Centrifuge the extracts from 5.2.3 for 5 min at ≥3,000 g (the higher the centrifugation force the better). This procedure is <u>NOT</u> recommended for extracts of commodities that pose difficulties in filtration (e.g. finely milled cereals, pineapples, strawberry, asparagus, kaki, banana and pears). For such commodities better use the following options (2) or (3).
- (2) Ambient centrifugation following freeze-out: Place the extracts from 5.2.3 into a freezer (e.g. at ca. -80 °C for 30 min or for > 120 min at ca. -20 °C) and centrifuge while still cold for 5 min at ≥ 3,000 g. Higher centrifugation forces (e.g. ≥ 10,000 g) and cold centrifugation are preferred. This procedure is suitable for the extracts of all samples and especially recommended for those posing difficulties in filtration.
- (3) Refrigerated high-speed centrifugation: Centrifuge the extracts from 5.2.3 for > 20 min at high centrifugation speed (e.g. > 10,000 g) and low temperatures (e.g. lower than -5 °C). Centrifugation time may be reduced to 5 min if the extract is pre-frozen. This procedure is suitable for extracts of all samples and especially recommended for those posing difficulties in filtration.

Notes:

- Solid metal racks suitable for falcon tubes (e.g. VWR® Modular Blocks for Conical-Bottom 50 mL Centrifuge Tubes) may be used to speed up freeze-out.
- Low temperatures reduce the solubility of interfering matrix components resulting in increased precipitation, which considerably facilitates the filtration step as well as the subsequent LC-MS/MS analysis by reducing matrix effects and increasing the lifespan of columns. To avoid redissolvation of the matrix components in the cases (2) and (3), it is recommended to transfer an aliquot of the cold supernatant into a sealable container for later use, or to proceed immediately with the next steps, while the extract is still cold.

5.2.5. Removal of proteins and lipids

- (1) <u>Cereals and pulses</u>: transfer 2 mL of the supernatant into a 10 mL centrifuge vial containing 2 mL of acetonitrile (3.3) and shake for 1 min Then centrifuge for 5 min at >3000 g (see 2.7).
- (2) <u>Nuts and oilseeds</u>: transfer 2 mL of the supernatant into a 10 mL centrifuge vial containing 2 mL of acetonitile (3.3) and 100 mg of C18 sorbent and shake for 1 min Then centrifuge for 5 min at >3000 g (see 2.7).
- (3) Oily fruits (e.g. avocado): transfer 4 mL of the supernatant (from 5.2.4) into a 10 mL centrifuge vial containing 200 mg of C18 sorbent and shake for 1 min Centrifuge for 5 min at >3000 g (see 2.7). This step may be skipped if the sample was centrifuged frozen (5.2.4-(2) and 5.2.4-(3)), with the supernatant being removed while still very cold.

5.2.6. Filtration

- (1) <u>All commodities of plant origin except cereals, pulses, nuts and oilseeds</u>: Withdraw an aliquot (e.g. 2-3 mL) of the supernatant from **5.2.4** or **5.2.5** using a syringe (**2.10**) and **filter** it through a syringe filter (**2.11**) either directly into an auto-sampler vial (**2.13**) or into a sealable storage vessel.
 - **Notes:** Where centrifugation with the available means results in extracts that are difficult to filter, a 2-step filtration may be performed by connecting a 0.45 μ m syringe filter on top of a 0.2 μ m one (2.10).
 - Where a high lipid and low protein content commodity (e.g. avocado) was centrifuged frozen (under **5.2.4),** and step **5.2.5** was skipped, filter the supernatant quickly to avoid that lipids redissolve.
- (2) <u>Cereals, pulses, nuts and oilseeds</u>: Transfer a 3 mL aliquot of the supernatant from 5.2.5 into an ultrafiltration unit (**2.12**) and centrifuge at ca. 3,000 g until enough filtrate is accumulated in the reservoir (5 min are typically enough). Transfer an aliquot of the filtrate into an autosampler vial for measurement.

Notes:

- Filtration of honey extracts: In case of clogging of the filters because of pollen or wax particles, use 5.0 μm pore size syringe filters (2.11) for pre-filtration (or even instead of the filters with smaller pore-sizes), as pollen grains are typically > 10 μm in diameter. High-speed centrifugation (see 5.2.4 (3)) also helps to separate pollen.

QuPPe-PO-Method at a glance Procedure for most commodities of Plant Origin

WEIGH sample homogenate into 50 mL centrifuge tube

Fresh fruits and vegetables (with high water content): 10 g \pm 0.1 g Previously re-hydrated dry fruit: e.g. 13.5 g \pm 0.1 g (containing 5 g sample) Dry commodities (e.g. herbs): 2 g \pm 0.02 g

ADJUST WATER CONTENT of sample to 10 mL

(Mandatory for matrices w. <80% water. If no IL-IS used manadatory for ALL matrices)

e.g. +10 mL of water to 2g of dried mint;

+2 mL water to 10 q potato; + 3.5 mL water to 10 q garlic

Add 100 µL isotopically-labeled internal standard (IL-IS) mix

ADD EXTRACTION SOLVENT (10 mL methanol containing 1 % formic acid)

SHAKE thoroughly for 1 min to 15 min for dry commodities

<u>Preferably</u> FREEZE-OUT extract until completely frozen

e.g. >90 min at -18 $^{\circ}$ C or ca. 30 min at -80 $^{\circ}$ C

CENTRIFUGE (5 min at >3,000 g but **preferably** >10,000 g);

 $\frac{\text{preferably}}{\text{cryogenic centrifugation (e.g. at -10 °C)}} (if centrifuge is not refrigerated, swiftly proceed with centrifugation and the following step to avoid redissolvation of matrix)}$

dSPE to Remove Lipids for High Oil Content samples (e.g. avocado): (this step may be skipped if sample was centrifuged frozen at \leq -10 °C and \geq 20 min)

TRANSFER 4 mL raw extract into a tube containing 200 mg C₁₈-sorbent, SHAKE for 1 min and CENTRIFUGE (>3,000 g for 5 min)

WITHDRAW SUPERNATANT AND FILTER it into a plastic autosampler vial

(use syringe filter of 0.2 μm pore size; e.g. H-PTFE)
(plastic vials are recommended as some compounds tend to interact with glass)
(withdraw cold supernatant quickly after centrifugation to avoid that matrix components redissolve)

Figure 1: QuPPe-PO-Method at a glance (general procedure for most commodities, not considering paraquat and Diquat)

QuPPe-PO-Method at a glance Procedure for cereals, pulses, nuts and oilseeds

Weigh 5 ± 0.05 g of sample homogenate into a 50 mL centrifuge tube Add 9 mL of water Add 100 µL isotopically-labelled internal standard (IL-IS) mix Add 10 mL MeOH containing 1 % formic acid + extra 100 µL formic acid close tube and shake Add 1 mL 10% aqueous EDTA solution Shake thoroughly for 15 min by a mechanical shaker Option 1 Option2: Freeze-out sample e.g. 30 min at -80 °C or >90 min at -20 °C **Refrigerated High-Speed Centrifugation Immediately Centrifuge** e.g. >10,000 g at -10 °C for ≥20 min >3,000 g for 5 min (>10,000 g preferred) (refrigerated centrifugation preferred) Removal of proteins and lipids Transfer 2 mL of raw extract into a tube containing ... a) Oily Seeds, Nuts: 2 mL acetonitrile and 100 mg $C_{\rm 18}$ -sorbent b) Pulses and Cereals: 2 mL acetonitrile Shake for 1 min and centrifuge at >3,000 g for 5 min Filter aliquot of supernatant Centrifugation assisted ultrafiltration through a 5 kDa cut-off filter (e.g. polyethersulfone membrane)

Figure 2: QuPPe-PO-Method at a glance; procedure for cereals, pulses, oilseeds and nuts

QuPPe-PO-Method at a glance

Procedure for <u>Diquat and Paraquat</u> in various commodities (e.g. pulses, oilseeds, nuts, cereals, potatoes, bananas)

Weigh sample homogenate into a 50 mL centrifuge tube

Fresh fruit and vegetables (e.g. potatoes, pineapple, banana: 10 ± 0.1 g; Dry samples (e.g. cereals, pulses, nuts, oilseeds: 5 ± 0.05 g.

Adjust water content to 10 mL

Fresh fruit and vegetables: e.g. potatoes 2 mL, banana: 2.5 mL; Dry samples (e.g. cereals, pulses, nuts, oilseeds: 10 mL.

Add 10 mL HCI-methanol mix (MeOH/1M HCI 1/1)

Add 100 µL isotopically-labelled internal standard (IL-IS) mix

Shake thoroughly for 15 min by a mechanical shaker

Option 1 Freeze-out sample

e.g. 30 min at -80 °C or >90 min at -20 °C

Immediately Centrifuge

>3,000 g for 5 min (>10,000 g preferred) (refrigerated centrifugation preferred)

Option 2

Refrigerated High-Speed Centrifugation

e.g. >10,000 g at -10 °C for ≥20 min

Removal of proteins and lipids

Transfer 2 mL of raw extract into a tube containing ...

a) Oily Seeds, Nuts: 2 mL acetonitrile and 100 mg C₁₈-sorbent
 b) Pulses and Cereals: 2 mL acetonitrile

Shake for 1 min and centrifuge at >3,000 g for 5 min

Filter aliquot of supernatant into a plastic autosampler vial

(use syringe filters of 0.2 µm pore size, e.g. H-PTFE)

Figure 3: QuPPe PO Method at a glance; procedure for the extraction of Diquat and Paraquat from various commodities, e.g. from potatoes, bananas, cereals, pulses, oilseeds and nuts

QuPPe-PO-Method at a glance **Procedure for honey** Weigh sample homogenate into a 50 mL centrifuge tube $5 g \pm 0.05 g$ Adjust water content of sample to 10 mL (not mandatory if IL-IS is used) +7.5 mL Add 100 µL isotopically-labelled internal standard (IL-IS) mix Add 10 mL MeOH containing 1 % formic acid, close tube Shake thoroughly for 5-15 min by a mechanical shaker Option 1 Option 2 Freeze-out sample till completely frozen e.g. 30 min at -80 °C or >90 min at -20 °C Refrigerated High-Speed **Immediately Centrifuge** Centrifugation >3,000 g for 5 min (>10,000 g preferred) e.g. >10,000 g at -10 °C (refrigerated centrifugation preferred) for ≥20 min WITHDRAW SUPERNATANT AND FILTER it into a plastic autosampler vial (use syringe filter of 0.2 μm pore size; e.g. H-PTFE) (**plastic vials are recommended** as some compounds tend to interact with glass) (withdraw cold supernatant quickly after centrifugation to avoid that matrix components redissolve) (in case of clogging of the filters because of pollen or wax particles, use 5.0 μm pore size syringe filters for a pre-filtration; Note: high-speed centrifugation (Option 2) also helps to separate pollen)

Figure 4: QuPPe-PO-Method at a glance; procedure for honey

5.3. Preparation of blank extracts

Using homogenates of suitable blank commodities (not containing any relevant residues of the analytes of interest), proceed sample preparation exactly as described in **5.2** but **SKIP THE ADDITION OF ISs.**

5.4. Recovery experiments

Weigh an appropriate portion (see **5.2.1**) of a blank commodity homogenate into a 50 mL centrifuge tube (**2.3**) and spike it with a suitable pesticide working solution (**3.21** and **Table 45**). Spike directly to the matrix, prior to any water or solvent addition. Use small volumes of pesticide working solutions (e.g. 50-300 μ L), to avoid too strong dilution. Conduct sample preparation as described in **5.2**.

5.5. Preparation of calibration standards

5.5.1. Solvent-based calibration standards

An exemplary pipetting scheme for preparing solvent-based calibration standards is shown in **Table 2**.

The calculation of the mass-fraction W_R of the pesticide in the sample, when IS is used, is shown in **5.7.1**. Where solvent-based calibrations are used the use of IL-ISs for quantification is essential as the IS compensates for any matrix-related signal suppressions / enhancements.

Notes:

- Though matrix-matched calibration is considered the best option, solvent-based calibrations can also produce accurate results as IL-ISs can compensate for errors irrespective on whether the calibration is solvent-based, matrix-based or matrix-matched. Nevertheless, in some cases the use of matrix-based calibrations are to be preferred over solvent-based calibrations as the matrix present can decrease unwanted interactions with surfaces (e.g. in the injector area) thus leading to peak shapes and retention times that are closer to those observed from sample extracts.

 Table 2: Exemplary pipetting scheme for the preparation of calibration standards

Table 2. Exemplary pr	, ,		,		Calibration standards					
		Solve	Solvent based (5.5.1)			M	latrix-mato	hed (5.5.2	2)	
		using IL-IS ⁴			V	Vithout IL-I	S ⁵	using IL-IS ⁴		
Calibr. levels in μg po in μg pesticide/ "IL-l	0.05 ⁶	0.1	0.25	0.05	0.1	0.25	0.05	0.1	0.25	
Blank extract (5.3)		-	-	-	850 μL	850 μL	850 μL	800 μL	800 μL	800 μL
1:1 (v/v) mix of wate acidified methanol (850 μL	800 μL	850 μL	100 μL	50 μL	100 μL	50 μL	-	50 μL
Pesticide working	1 μg/mL	50 μL	100 μL	-	50 μL	100 μL	-	50 μL	100 μL	-
solutions (3.21) ²	5 μg/mL	-	-	50 μL	-	-	50 μL	-	-	50 μL
IS-WSln-2 (3.25) ^{1,3}		100 μL	100 μL	100 μL	-	-	-	100 μL	100 μL	100 μL
Total volume		1000 μL	1000 μL	1000 μL	1000 μL	1000 μL	1000 μL	1000 μL	1000 μL	1000 μL

 $^{^{1}}$ One IL-IS portion would correspond to the IL-IS mass contained in the IS-WSln-2 solution added to the calibration standards (in the particular example 100 μ L are added to each calibration standard).

² The concentration of the pesticide working solution(s) should be sufficiently high to avoid excessive dilution of the blank extract, which would result in matrix effect deviations.

³ For calibration standards of 1 mL it is highly recommended to prepare the IS-WSIn-2 (3.25) by diluting IS-WSIn-1 (3.24) appropriately (e.g. 20-fold). The same volume and pipette as in 5.2.3 can be used for preparing the calibration standards.

⁴ When employing IL-ISs, matrix-matching and volume adjustments are of less importance as the IL-IS compensates for any matrix-related signal shifts. Also solvent-based calibrations can be used here. Important is that a) the mass ratio of pesticide and IL-IS in the respective calibration standards and b) the ratio between the IL-IS mass added to the sample (5.2.3) and the IL-IS mass added to the calibration standard(s) (5.5.1 and 5.5.2) is known and recorded. For convenience the latter mass-ratio should be kept constant throughout all calibration levels (e.g. at 20:1 when preparing calibration standards of 1 mL).

5.5.2. Matrix-based and matrix-matched calibration standards

Transfer suitable aliquots of a blank extract (5.3) to auto-sampler vials and proceed as shown in **Table 2**. The calculation of the mass-fraction W_R of the pesticide in the sample using matrix-matched calibration standards, with and without the use of IL-IS, is shown in **5.7.1** and **5.7.2** respectively.

5.5.3. Standard-Additions approach

Where no appropriate IL-ISs are available the method of standard additions is a very effective approach for compensating matrix-induced enhancement or suppression phenomena. As this procedure involves a linear extrapolation it is mandatory that pesticide concentrations and detection signals show a linear relationship throughout the relevant concentration range. The procedure furthermore requires knowledge of the approximate (estimated) residue level in the sample ($w_{R(approx)}$). This info is derived from a preliminary analysis.

Prepare 4 equal portions of the final extract and spike 3 of them with increasing amounts of analyte. The amounts to be added should be chosen in such a way to remain within the linear range. It should be avoided that the added levels are too close to the expected analyte level to avoid that measurement variability will influence too much the slope, which is used to calculate the analyte level. In case the concentrations are outside the linear range a dilution of all 4 extracts with the extraction solvent is indicated.

Prepare a working solution (3.21) of the analyte at a concentration level where 50 or 100 μ L of the solution contain the lowest amount of analyte to be added.

Example A: Vial 1) no addition; vial 2) 0.5 x $W_{R(approx)}$, vial 3) 1 x $W_{R(approx)}$, and vial 4) 1.5 x $W_{R(approx)}$,

Example B: Vial 1) no addition; vial 2) 1 x $W_{R(approx)}$, vial 3) 2 x $W_{R(approx)}$, and vial 4) 3 x $W_{R(approx)}$.

Adjust the volume within all vials by adding the corresponding solvent amounts.

An exemplary pipetting scheme according to Example B in shown in **Table 3**. The calculation of the mass fraction of the pesticide in the sample w_R is shown in **5.7.2**.

 Table 3: Exemplary pipetting scheme of a standard additions to extract aliquots approach (for a sample extract containing 0.5 g

sample equivalents per mL and an estimated residue level ($w_{R(approx)}$) of 0.5 mg/kg = 0.25 μ g/1000 μ l

Additions	Vial 1	Vial 2	Vial 3	Vial 4
Volume of sample extract	1000 μL (= 0.5 g sample)			
Internal Standard (IS)	none	none	none	none
Added volume of pesticide working solution containing 5 µg/mL (3.21)	-	50 μL	100 μL	150 μL
Mass of pesticide added to each vial ($m_{pest}^{std\ add}$)	-	0.25 μg	0.5 μg	0.75 μg
Volume of solvent (for volume equalization)	150 μL	100 μL	50 μL	-
Final volume	1150 μL	1150 μL	1150 μL	1150 μL

 $^{^5}$ Where IL-ISs are <u>not</u> available/employed, matrix-matched standards **Table 2**) or the standard additions approach (**5.5.3**) are particularly important to compensate for matrix effects in measurement. In both cases the total volume of the sample raw extracts is assumed to be exactly 20 mL. This translates into 0.5 g sample equivalents per mL when using 10 g test portions. 6 The calibration level of 0.05 μg/mL corresponds to 0.1 mg pesticide /kg sample, when using 10 g test portions, or to 0.2 mg/kg sample when using 5 g test portions. Where the raw extract is diluted further and when using 5 g test portions (e.g. pulses, nuts and oilseeds), the 0.05 μg/mL calibration level corresponds to 0.4 mg pesticide /kg sample.

5.5.4. Procedural calibration standards

Procedural calibration is most useful where numerous samples of the same commodity type are analyzed within the same badge and can help to largely compensate for recovery and matrix effects. An ideal precondition is the availability of a blank matrix of exactly the same type as the samples to be analyzed. For this, prepare 4 analytical portions of a suitable blank sample and spike three of them with increasing amounts of the pesticides of interest (as done in recovery experiments, see also **5.4**). The aim should be to cover the concentration range of the analytes expected in the samples. These spiked samples are extracted as described above and the obtained extracts are used in the same way as any other matrix-matched standards.

5.6. LC-and IC-MS/MS analysis

Any suitable LC- or IC-MS/MS conditions generating peaks that can be well integrated may be used. The use of IL-ISs typically ensures a good method accuracy and robustness even when matrix components have a strong influence on signals or retention times. Some exemplary instrument measurement conditions are given below. An overview of LC- and IC-MS/MS conditions proposed within this document is given in **Table 4** and following.

Table 4: Scope of QuPPe-LC-Methods of analytes analyzed in the ESI-pos. mode (see legent under Table 7) Part I

QuPPe method code	M 1.1	M 1.2	M 1.3	M 1.4	M 1.5	M 1.6a/b	M 1.7 a/b	M 1.8	M 1.9	M 1.10	M 1.11	M 1.12
QuPPe method code	(5.6.2)	(5.6.3)	(5.6.4)	(5.6.5)	(5.6.6)	(5.6.7)	(5.6.8)	(5.6.9)	(5.6.10)	(5.6.11)	(5.6.12)	(5.6.13)
Separation principle	Anion Ex.	Anion Ex.	Carbon	Carbon	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC
Column type	AS 11	AS 11-HC	Hypercarb	Hypercarb	Trinity Q1	a: Torus DEA/ b: APPC	a: Torus DEA/ b: APPC	APPC	Raptor PolarX	Obelisc N	Luna Polar Pesticides	Luna Polar Pesticides
		ANALYTES COVERED BY LC-MS/MS IN THE ESI-POSITIVE MODE										
Amitrole	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT
ETU	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT	NT	NT
PTU	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cyromazine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trimesium	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Daminozide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chlormequat	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT	NT	NT
Mepiquat	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT	NT	NT
Difenzoquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT
Propamocarb	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Melamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT
Paraquat	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT
N,N-Dimethylhydrazine	NT	NT	-	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nereistoxin	NT	NT	\checkmark	NT	NT	NT	NT	NT	NT	NT	NT	NT
Streptomycin	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Kasugamycin	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Morpholine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diethanolamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Triethanolamine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Triazole	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-alanine	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-acetic acid	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Triazole-lactic acid	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Aminocyclopyrachlor	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloridazon-desphenyl	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Mepiquat-4-hydroxy	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-desmethyl	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-oxide	NT	NT		NT	NT	NT		NT	NT	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Nicotine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Matrine	NT	NT		NT	NT	NT		NT	NT	NT	NT	NT
Oxymatrine	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Table 5: Scope of QuPPe-LC- and IC-Methods of analytes analyzed in the ESI-pos. mode (see legent under Table 7) Part II

Table 5: Scope of C	M 2	M 3	M 4.1	M 4.2	M 5	M 6	M 7	M8	М 9	M 10	M 11
QuPPe method code	(5.6.12)	(5.6.15)	(5.6.16)	(5.6.17)	(5.6.18)	(5.6.19)	(5.6.20)	(5.6.21)	(5.6.22)	(5.6.23)	(5.6.24)
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC	HILIC	Ion Chroma- tography
Column type	Obelisc R	Obelisc R	Obelisc R	BEH-Amide	PFP	Obelisc R	Trinity P1	Hypercarb	Trinity P1	Torus DEA	AS19
ANALYTES COVERED BY LC-and IC-MS/MS IN THE ESI-POSITIVE MODE											
Amitrole	NT	✓	-	✓	NT	NT	NT	NT	NT	NT	NT
ETU	NT	✓	-	✓	✓	NT	NT	NT	NT	NT	NT
PTU	NT	✓	-	✓	✓	NT	NT	NT	NT	NT	NT
Cyromazine	NT	✓	✓	✓	NT	NT	NT	NT	NT	NT	NT
Trimesium	NT	✓	✓	✓	NT	NT	NT	NT	NT	NT	NT
Daminozide	NT	✓	✓	✓	NT	NT	NT	NT	NT	NT	NT
Chlormequat	NT	✓	✓	✓	✓	NT	NT	NT	NT	NT	NT
Mepiquat	NT	✓	✓	✓	✓	NT	NT	NT	NT	NT	NT
Difenzoquat	NT	✓	✓	✓	✓	NT	NT	NT	NT	NT	NT
Propamocarb	NT	✓	✓	✓	NT	NT	NT	NT	NT	NT	NT
Melamine	NT	NT	✓	✓	NT	NT	NT	NT	NT	NT	NT
Diquat	NT	NT	✓	(√)*** *	NT	NT	NT	NT	NT	NT	NT
Paraquat	NT	NT	✓	(√)*** *	NT	NT	NT	NT	NT	NT	NT
N,N-Dimethylhydrazine	NT	NT	✓	-	NT	NT	NT	NT	NT	NT	NT
Nereistoxin	NT	NT	✓	✓	NT	NT	NT	NT	NT	NT	NT
Streptomycin	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Kasugamycin	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Morpholine	NT	NT	(✓)	(✓)	NT	NT	✓	NT	✓	NT	NT
Diethanolamine	NT	NT	(✓)	(✓)	NT	NT	✓	NT	NT	NT	NT
Triethanolamine	NT	NT	(✓)	(✓)	NT	NT	\checkmark	NT	NT	NT	NT
1,2,4-Triazole	NT	NT	(√)	-	NT	NT	NT	✓	NT	(√)	NT
Triazole-alanine	NT	NT	(✓)	-	NT	NT	NT	✓	NT	✓	NT
Triazole-acetic acid	NT	NT	(✓)	-	NT	NT	NT	✓	NT	✓	NT
Triazole-lactic acid	NT	NT	NT	-	NT	NT	NT	✓	NT	✓	NT
Aminocyclopyrachlor	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT
	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT
Propamocarb-N-desmethyl	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Nicotine	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT
Matrine	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Oxymatrine	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT

Table 6: Scope of QuPPe-LC-Methods of analytes analyzed in the ESI-neg. mode Part I

QuPPe method code	M 1.1 (5.6.2)	M 1.2 (5.6.3)	M 1.3 (5.6.4)	M 1.4 (5.6.5)	M 1.5 (5.6.6)	M 1.6a/b (5.6.7)	M 1.7 a/b (5.6.8)	M 1.8 (5.6.9)	M 1.9 (5.6.10)	M 1.10 (5.6.11)	M 1.11 (5.6.12)	M 1.12 (5.6.13)
Separation principle	Anion Ex.	Anion Ex.	Carbon	Carbon	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC
Column type	AS 11	AS 11-HC	Hypercarb	Hypercarb	Trinity Q1	a: Torus DEA/ b: APPC	a: Torus DEA/ b: APPC	APPC	Raptor PolarX	ObeliscN	Luna Polar Pesticides	Luna Polar Pesticides
		AN	ALYTES COVE	RED BY LC-MS	/MS IN THE E	SI-NEGATIVE MO	ODE					
Ethephon	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
НЕРА	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
Glufosinate	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
N-Acetyl-Glufosinate	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
MPPA	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
Glyphosate	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	✓	✓	-
AMPA	✓	✓	✓	NT	✓	✓	(✓)	NT	✓	(√)	(✓)	-
Phosphonic acid	(✓)	(√)	✓	✓	✓	✓	✓	NT	✓	(√) ***	(√)	✓
N-Acetyl-AMPA	NT	✓	✓	NT	✓	✓	(✓)	NT	NT	NT	NT	NT
Fosetyl-Al	-	✓	✓	NT	✓	✓	(✓)	NT	✓	(√) ***	✓	-
Maleic Hydrazide	-	-	✓	NT	-	-	-	(√)	(✓)	(✓)	-	-
Perchlorate	NT	-	✓	✓	✓	(√)**	✓	✓	✓	✓	-	✓
Chlorate	NT	-	✓	✓	✓	(√)**	✓	✓	(✓)	✓	-	(✓)
Bialaphos	NT	NT	✓	NT	✓	NT	NT	NT	✓	NT	NT	NT
Cyanuric acid	NT	NT	✓	NT	-	-	-	✓	(✓)	(✓)	-	-
Bromide	NT	NT	-	✓	✓	(√)**	✓	NT	✓	✓	(✓)	✓
Bromate	NT	NT	(✓)	✓	NT	NT	✓	NT	NT	NT	NT	NT
N-Acetyl-Glyphosate	NT	NT	✓	NT	(√)**	✓	(√)	NT	-	✓	✓	-
Difluoroacetic acid	NT	NT	NT	NT	NT	✓	✓	NT	✓	NT	NT	NT
Trifluoroacetic acid	NT	NT	NT	NT	NT	✓	✓	NT	✓	✓	-	(✓)
Thiocyanate	NT	NT	(√)**	✓	NT	NT	✓	NT	✓	NT	-	(✓)
Desmethyl-Dimethoate	NT	NT	✓	-	NT	NT	NT	NT	NT	NT	NT	NT
Diethyl thiophosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Diethyl phosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
O,O-dimethyl dithiophosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
O,O-diemthyl thiophosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Diethyl dithiophosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
Dimethyl phosphate	NT	NT	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT
✓ = satisfactory chamatography and detection consitivi		•	•	•				•		•		

^{✓ =} satisfactory chomatography and detection sensitivity achieved,

NT = Not tested under the conditions shown in the respective sections,

^{(&}lt;) = possible but compromised due to matrix effects or lacking separation or limited sensitivity or limitations in the detection of qualifiers compromising identification.

[&]quot;-" analysis was tested and found to be poor under the described conditions,

^{*} Using a gradient (98% B -> 60% B in 5 min, hold 2 min)

^{**} Different LC-conditions required to improve peaks (see M1.7 or M1.9)

^{***} Compromised quantitation of Phosphonic acid due to co-elution of Phosphonic acid and Fosetyl, see also General Hints 5.6.1

^{****} Quality of analysis may strongly depend on instrument type and condition

Table 7: Scope of QuPPe-LC- and IC-Methods of analytes analyzed in the ESI-neg. mode Part II

Table 7. Scope of Qu	M 2	M 3	M 4.1	M 4.2	M 5	M 6	M 7	M8	M 9	M 10	M 11
QuPPe method code	(5.6.12)	(5.6.15)	(5.6.16)	(5.6.17)	(5.6.18)	(5.6.19)	(5.6.20)	(5.6.21)	(5.6.22)	(5.6.23)	(5.6.24)
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC	HILIC	Ion Chroma-
Separation principle	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC	HILIC	tography
Column type	Obelisc R	Obelisc R	Obelisc R	BEH-Amide	PFP	Obelisc R	Trinity P1	Hypercarb	Trinity P1	Torus DEA	AS19
ANALYTES COVERED BY LC-MS/MS IN THE <u>ESI-NEGATIVE</u> MODE											
Ethephon	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
НЕРА	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Glufosinate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
N-Acetyl-Glufosinate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
МРРА	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Glyphosate	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
АМРА	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Phosphonic acid	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
N-Acetyl-AMPA	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	✓
Fosetyl-Al	✓	NT	NT	NT	NT	NT	√ *	NT	NT	NT	✓
Maleic Hydrazide	✓	NT	NT	NT	NT	NT	√ *	NT	NT	NT	(√)
Perchlorate	✓	NT	NT	NT	NT	NT	√ *	NT	NT	NT	✓
Chlorate	NT	NT	NT	NT	NT	NT	√ *	NT	NT	NT	✓
Bialaphos	NT	NT	NT	NT	NT	NT	-	NT	NT	NT	-
Cyanuric acid	NT	NT	NT	NT	NT	NT	√ *	NT	NT	NT	✓
Bromide	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓
Bromate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
N-Acetyl-Glyphosate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓
Difluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	✓	NT	✓
Trifluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	✓	NT	✓
Thiocyanate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓
Desmethyl-Dimethoate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	_
Diethyl thiophosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diethyl phosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
O,O-dimethyl dithiophosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
O,O-diemthyl thiophosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Diethyl dithiophosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dimethyl phosphate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
/ = satisfactory chamatography				•		•	•		•	•	•

^{✓ =} satisfactory chomatography and detection sensitivity achieved,

NT = Not tested under the conditions shown in the respective sections,

⁽ y) = possible but compromised due to matrix effects or lacking separation or limited sensitivity or limitations in the detection of qualifiers compromising identification.

[&]quot;-" analysis was tested and found to be poor under the described conditions,

^{*} Using a gradient (98% B -> 60% B in 5 min, hold 2 min)

^{**} Different LC-conditions required to improve peaks (see M1.7 or M1.9)

Table 8 : Methods mainly used by CVUA Stuttgart

Method	Special remarks on Substances	LC-MS/MS	Comments
Wethou	Glyphosate	EC-1013/1013	Comments
M 1.3: Glyphosate & Co. Hypercarb (see 5.6.4)	AMPA N-Acetyl-AMPA N-Acetyl-Glyphosate Ethephon HEPA Glufosinate N-Acetyl-Glufosinate MPPA Fosetyl-Al Phosphonic acid (screening) Maleic Hydrazide Perchlorate (screening) Chlorate (screening) Cyanuric acid Bialaphos Desmethyl-Dimethoate	1290 Agilent Infinity II and Sciex QTRAP 6500+	Evaluation via solvent calibration and IL-ISs except for Bialaphos and N-Acetyl-AMPA (IL-IS not yet available) M 1.5 and M 1.6 are currently being tested for their suitability to replace M 1.3
M 1.4: Method 1.4 (M1.4): "Per- ChloPhos" (see 5.6.5)	Perchlorate (quantitative) Chlorate (quantitative) Phosphonic acid (quantitative) Bromide (Screening, quantitative) Bromate (quantitative) Thiocyanate	1290 Agilent Infinity II and Sciex QTRAP 6500+	Mostly employed directly (option: screening by M 1.3, if postive -> M 1.4) Dilution 5-fold Evaluation via solvent calibration and IL-ISs
M 4.1: "Quats & Co Obelisc R (see 5.6.16)	Paraquat (for specific commodities) Diquat (for specific commodities)	1290 Agilent Infinity II and Sciex QTRAP 5500	Analysis of specific relevant commod- ities. Evaluation via matrix-based cali- bration and IL-ISs
M 4.2: "Quats & Co BEH Amide" (see 5.6.17)	Amitrole ETU Chlormequat Mepiquat Daminozide PTU Cyromazine Trimethylsulfonium Nereistoxin Difenzoquat Melamine Propamocarb Morpholine (1st screening) Diethanolamine (1st screening) Triethanolamine (1st screening) Aminocyclopyrachlor Chloridazon-desphenyl Mepiquat-4-hydroxy Propamocarb-N-oside Nicotine Matrine Oxamatrine	1290 Agilent Infinity II and Sciex QTRAP 5500	Evaluation via matrix-based calibration and IL-ISs (except for Difenzoquat, Aminocyclopyrachlor, Mepiquat-4-hydroxy, Propamocarb-Ndesmethyl, Propamocarb-N-oxide)
M 7: "Morpholine, Diethanola- mine and Triethanolamine" (see 5.6.20)	Morpholine (quantitative) Diethanolamine (quantitative) Triethanolamine (quantitative)	1290 Agilent Infinity II and Sciex QTRAP 5500	Employed if screening by M 4.2 was positive and in matrices where DEA tends to give false negative results in M 4.2 (e.g. in cereals, dried mushrooms). Quantification via solvent-based calibration and IL-ISs

5.6.1. General hints on analytes to avoid pitfalls

1. Mass spectrometric interferences:

a) AMPA and Fosetyl share the mass-transition 110/81. Chromatographic separation is thus needed.

b) Interference of Phosphonic acid by Phosphoric acid; take care when using M 1.4 (Hypercarb column):

When extracts containing high levels of Phosphoric acid (which is naturally contained at high concentrations in many samples) are injected, the chromatographic separation of Phosphoric and Phosphonic acid is compromised. This often results in a suppression of the Phosphonic acid signal and in some cases even leads to false negative results. The most important qualifier mass-transition of Phosphonic acid (81/63) also occurs as a minor transition of Phosphoric acid, but as the latter is often present at much higher levels than Phosphonic acid its interference on this mass transition can still be significant, especially if these two compounds elute in close vicinity (e.g. M 1.4 using Hypercarb column). Exemplary chormatograms demonstrating this effect are shown in **Table 10**.

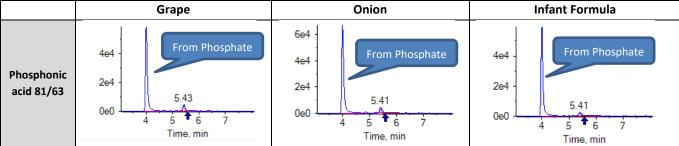
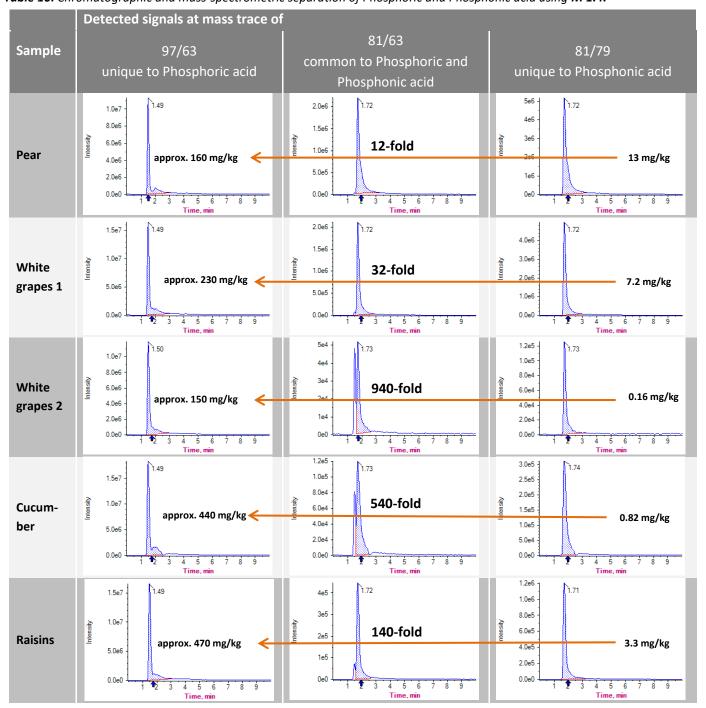
The chromatographic separation of Phosphoric and Phosphonic acid considerably improves following dilution of the extracts typically allowing proper detection, identification and quantification of Phosphonic acid next to high levels of phosphoric acid. When using method M 1.4 it is thus beneficial to inject smaller volumes of sample extract (e.g. 1-2 μL) or to dilute QuPPe extracts 5-10-fold before injection.

Fortunately, both Phosphoric and Phosphonic acid have at least 1 proper individual mass-transition (97/63 and 81/79 respectively, shown in Table 10), which in the case of Phosphonic acid can be used for quantitation and to improve identification certainty. The elution time and peak shape of the Phosphonic acid IL-IS can also be used to distinguish it from Phosphoric acid and to avoid false positives. Using signals on the 81/63 mass trace it was calculated that 20 mg/kg Phosphoric acid would simulate 0.1 mg/kg Phosphonic acid if this mass transition was used for quantification. Different instrument settings may result in a different degree of interference.

In an experiment using Differential Mobility Separation (DMS) a separation of the phosphonate generated in-source from Phosphate and the original Phosphonate (mass trace m/z 81/63) was achieved, possibly due to a different molecular structure of the P(OH)₃ species and the HPO(OH)₂ species.

Tip: Using method M 1.7 (Torus DEA and APPC) and method M 1.8 (Raptor Polar X), sufficient chromatographic separation was achieved without dilution of the sample extract. Exemplary chromatograms for M1.7 are shown in Table 9

Table 9: Chromatograms of Phosphonate transition 81/63 (also common to Phosphate) at 0.01 μg phosphonate/mL in grape, onion and infant formula using **M 1.7**. Both substances are separated sufficiently.

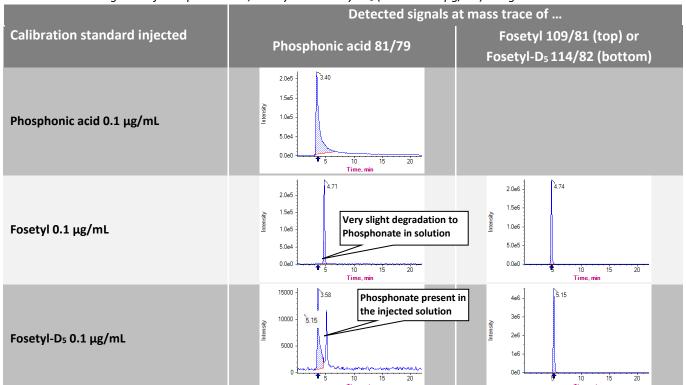


Table 10: Chromatographic and mass-spectrometric separation of Phosphoric and Phosphonic acid using M 1.4.

- c) Intereference of Phosphonic acid by Fosetyl and Fosetyl-D₅:
 - Fosetyl and its D₅-analogon tend to degrade to Phosphonic acid both in solutions and via in-source fragmentation in LC-MS/MS, see also **below** and **6**. **A good chromatographic separation between Fosetyl and Phosphonic acid is thus necessary**.
- d) Table **11** shows an <u>example</u> of this in-source fragmentation using M 1.3 and M 1.4 (Hypercarb column). Upon injection of $0.1 \,\mu\text{g/mL}$ Fosetyl, a peak showed up on the mass traces of Phosphonic acid at the retention time of Fosetyl. The signal intensity of this peak corresponded to $0.04 \,\mu\text{g/mL}$ Phosphonic acid. When injecting Fosetyl-D₅ at $0.1 \,\mu\text{g/kg}$ the in-source fragmentation was less abundant (corresponding to approx. $0.001 \,\mu\text{g/mL}$ Phosphonic acid) but Phosphonic acid as impurity showed up at its proper retention time at a concentration corresponding to approx. $0.007 \,\mu\text{g/mL}$.

Tip: To be on the safe side, Fosetyl-IL-IS should not be added to calibration solutions, sample test portions or sample extracts intended to be used for the analysing native Phosphonic acid. Further, calibration solutions used for the analysis of Phosphonic acid should better not contain any native Fosetyl.

Table 11: Chromatograms of Phosphonic acid, Fosetyl and Fosetyl-D₅ (each at 0.1 μ g/mL) using Method M 1.3 and M 1.4.

Note:

- In addition to the proper mass-traces of Fosetyl and Fosetyl-D5 the mass trace of Phosphonic acid is also shown to demonstrate the occurrence of in-source fragmentation of Fosetyl and Fosetyl-D5 towards Phosphonic acid as well as the presence of Phosphonic acid as an impurity of the Fosetyl-D5 standard solution.

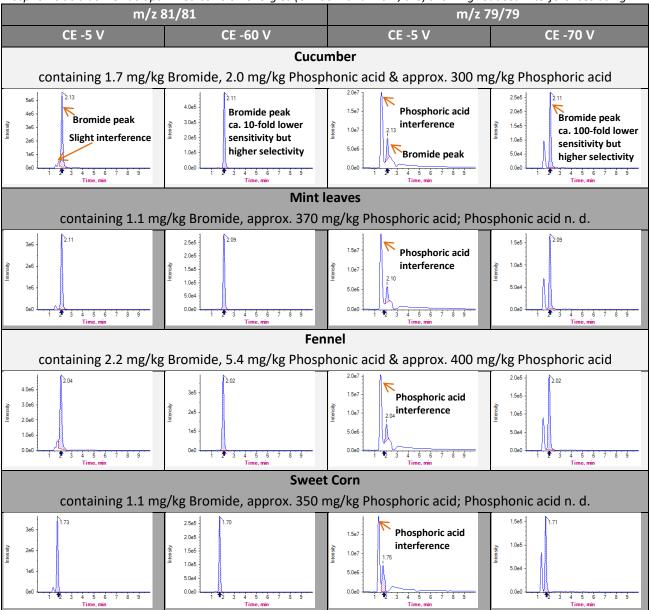
e) Paraquat interfered by Diquat:

Tranistions of Paraquat ($[M^{2+}-H^+]^+$ 185/#) are interfered by Diquat. Diquat and Paraquat produce several parent ions within the ion-source, each one fragmenting to various product ions, see 3.a). MRMs of singly charged protonated Paraquat ($[M^{2+}-H^+]^+$ 185/#) tend to be interfered by Diquat, e.g. $[M^{2+}-H^+]^+$ 185/170 and $[M^{2+}-H^+]^+$ 185/169. Same applies to the respective MRM of Paraquat D₈ ($[M^{2+}-H^+]^+$ 193/#), which is interfered by Diquat D₈. Furthermore, those transitions are less sensitive.

f) Bromide; take care when using M 1.4:

High levels of Phosphoric acid (which is naturally contained at high concentrations in many samples) or Phosphonic acid (that is used as fungicide) could affect the determination of bromide. Depending on the condition of the column, the separation of these three compounds could be insufficient, resulting in compromised identification and quantification, especially when using M 1.4 (Hypercarb column).

Bromide is mainly composed of two naturally occurring stable isotopes, that are almost equally frequent (79 Br $^-$ and 81 Br $^-$). For bromide (element-ion), no MS/MS fragmentation is possible so that MS/MS analysis has to rely on "parent/parent" analysis. The mass trace m/z 81/81 is highly recommended for quantifications whereas m/z 79/79 can be used as a qualifier.


The mass trace m/z 81/81 is interfered by Phosphonic acid (m/z of $[H_2PO_3]^-$ = 81) whereas m/z 79/79 is highly affected by Phosphoric acid due to in-source fragmentation (**Table 12**, the two columns declared as "CE -5 V"). In practice the interference by Phosphoric acid is more critical as it is naturally contained at high levels (e.g. 100-2000 mg/kg) in various samples.

Tip: A 50-fold dilution of QuPPe extracts typically allows better identification and quantification of bromide next to high levels of Phosphoric and Phosphonic acid as chromatographic separation is improved and matrix-effects reduced (when using M 1.4, Hypercarb).

To improve selectivity and increase quantification accuracy and identification certainty, the interferences caused by Phosphoric and Phosphonic acid can be further reduced by increasing the Collision Energy (CE) for the m/z 81 and 79 (**Table 12**, the two columns declared as "CE -70 V"). While Bromide cannot be fragmented, the interfering quasi-molecular ion of Phosphonic acid (m/z 81) as well as the interfering insource fragments of Phosphoric and Phosphonic acid (m/z 79) are largely destroyed by increased collision induced dissociation. While losing up to a 100-fold of absolute sensitivity, the interferences were largely decreased resulting in satisfactory signal-to-noise ratio.

Table 12: Chromatograms of Bromide using non-optimized collision energies (CE -5 V) showing the interference by Phosphoric and Phosphonic acid as well as optimized collision energies (CE -60 V and -70 V, the) showing reduced interferences using M 1.4.

2. <u>Degradation and Contamination:</u>

a) Possible contaminations by consumables:

Check filters, sorbents, chemicals and other consumables used in sample preparation for any contamination. Contamination originating from filters was oberseved, e.g. in the case of Perchlorate, Chlorate and Phosphonic acid (see comments under 2.11). Contamination originating from the C18 sorbent was observed with Morpholine. Contamination originating from the formic acid used in extraction was observed in the case of Perchlorate, Phosphonic acid and Trifluoroacetic acid. Reagent blanks, as QC measure are recommended at least as soon as one of the relevant consumables is changes (e.g. different badge).

Note

- Contaminations occurring during or after a dilution step have a more severe influence on the results and are thus more critical.
- For contaminations originating from IL-IS or other analytical standards check among others points: b), d), e), f)

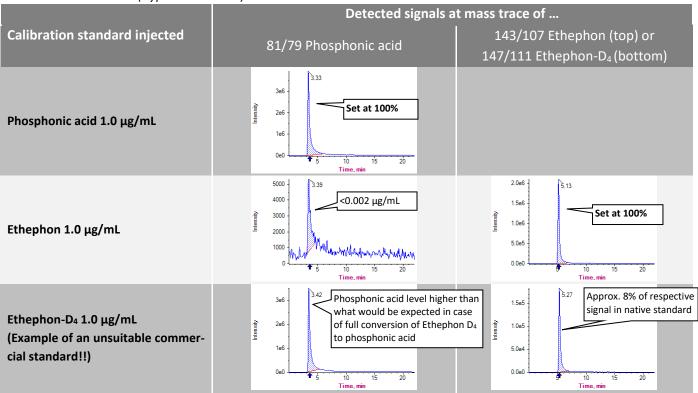
b) Issues concerning the purity of N-Acetyl-Glufosinate D₃:

There is two types of N-Acetyl-Glufosinate D₃ standards on the market. Both contain the three deuterium atoms on a methyl group, but the first one contains them on the methyl group of the acetyl moiety and the other one on the methyl group that is attached to the phosphorus atom. In theory, the acetyl group can be hydrolytically detached, so that native glufosinate may be formed in working solutions of N-Acetyl-Glufosinate (acetyl-D₃), leading to false positive results. Fortunately the degradation rate observed in the water:acetonitrile 9:1 mixture (see **Figure 43**) was negligible. More important is the content of native glufosinate in purchased N-Acetyl-Glufosinate (acetyl-D₃) standards.

Tip: Before first use, the standards should be checked for the presence of native glufosinate impurities and not used if the levels of native compound are considered critical. The levels of native glufosinate impurities depend on the manufacturer and the badge. Where e.g. $0.5 \, \mu g$ IL-IS is added to 1 g sample, the presence of 2% native glufosinate (a level once encountered) can lead to glufosinate levels of $0.01 \, mg/kg$. See also chapter **6**.

c) Stability of the Phosphonic acid IL-IS:

In presence of water and especially at high pH levels, Phosphonic acid $^{18}O_3$ will gradually convert to $^{18}O_2^{16}O_1$, $^{18}O_1^{16}O_2$ and eventually of $^{16}O_3$ (native) Phosphonic acid. The $^{18}O_3$ Phosphonic acid standard solution provided by the EURLs should be preferably diluted in acetonitrile, where it was shown to be stable for long periods.


d) Degradation of Ethephon, Fosetyl and their respective IL-ISs to Phosphonic acid:

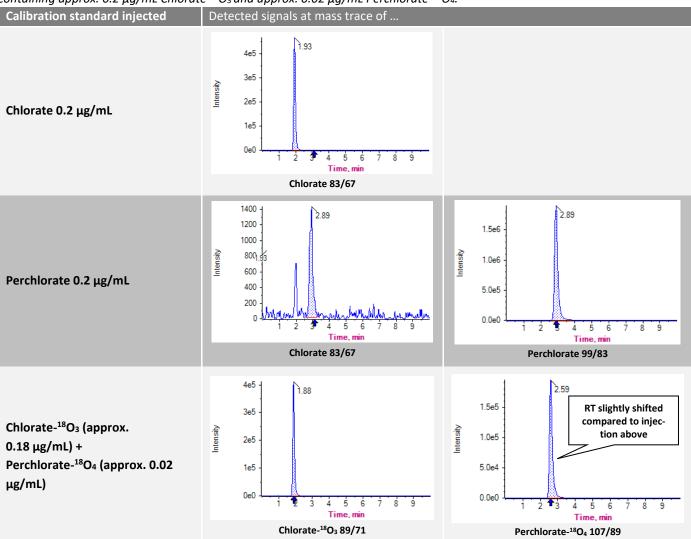
Fosetyl and Ethephon as well as their respective IL-IS's degrade to Phosphonic acid. **Table 13** shows a small peak of Phosphonic acid (corresponding to 0.002 μ g/mL) that showed up when Ethephon standard at 1 μ g/mL was injected using M 1.4. This contamination is considered negligible. However **Table 13** also shows chromatograms of an unsuitable Ethephon-D₄ standard containing only ca. 0.08 μ g/mL instead of the expected 1 μ g/mL Ethephon-D₄ and ca. 0.8 μ g/mL Phosphonic acid. The use of such an IL-IS would contaminate the sample with Phosphonic acid leading to false positive results.

Tip: To be on the safe side Fosetyl, Ethephon and their respective IL-IS's should thus not be added to calibration solutions or samples or sample extracts intended to be used for the analysis of native phosphonic acid. Furthermore calibration solutions used for the analysis of phosphonic acid should better not contain any native Ethephon or Fosetyl. **See also "Intereference of Phosphonic acid by Fosetyl:** Fosetyl and its D_5 -analogon tend to degrade to Phosphonic acid both in solutions and via in-source fragmentation in LC-MS/MS" and Chapter **6.**

Table 13: Chromatograms of Phosphonic acid, Ethephon and an unsuitable Ethephon-D₄ standard (each at $1.0 \,\mu g/mL$) using Method M 1.3 and M 1.4 (Hypercarb column).

Note:

- Whereas Phosphonic acid is only present at very low concentrations in the Ethephon standard the amount of Phosphonic acid in the Ethephon-D₄ standard is unacceptably high. That is caused by the Phosphonic acid having already been present at high amounts in the purchased standard.


e) Contamination of Maleic hydrazide D₂ with native Maleic hydrazide:

In the case of Maleic Hydrazide (MH), the amount of IL-IS added is comparably high due to the low detection sensitivity achieved for this compound. Assuming native MH being contained as impurity in D_2 -MH at 0.25 % (a typical level encountered) the resulting concentration of native MH following the addition of 20 μ g D_2 -MH to 10 g sample will be at 0.005 mg /kg sample. This aspect is to be considered when setting the Reporting Limits of MH as well as when judging residue levels in samples having low MRLs (e.g. baby food) or organic food. Alternatively,

f) Chlorate can be a minor contaminant of Perchlorate solutions

Chlorate can be a minor contaminant of Perchlorate solutions and is also a minor in-source fragment of Perchlorate. In the <u>example</u> below, Perchlorate standard at $0.2~\mu g/mL$ was injected resulting in two peaks on the mass traces of Chlorate (see **Table 14**). The first one originating from Chlorate contained as impurity in the Perchlorate solution (at approx. 0.35%) and the second one originating from in-source fragmentation at the retention time of Perchlorate, corresponding to a Chlorate amount of $0.001~\mu g/mL$. This means that calibration solutions containing both chlorate and perchlorate at the same level the chlorate signal will be overestimated by approx. 0.5% which is negligible. Also samples containing perchlorate may fake the presence of chlorate at very low levels, normally well below the reporting level of chlorate. When chlorate IL-IS is co-injected misidentification is unlikely as the two compounds typically separate well chromatographically.

Table 14: Chromatograms of Chlorate and Perchlorate at 0.2 μ g/mL and of a mixture of Chlorate- $^{18}O_3$ and Perchlorate- $^{18}O_4$, containing approx. 0.2 μ g/mL Chlorate $^{18}O_3$ and approx. 0.02 μ g/mL Perchlorate- $^{18}O_4$.

g) Degradation of Diquat and Paraquat:

Both compounds tend to undergo redox reactions via radicals and are therefore sensitive to light, as well as to certain chemicals. It was for example observed that Diquat- D_4 shows the tendency for D/H replacement, especially in methanol. Additionally, a degradation of both native Diquat and Diquat- D_4 was observed in methanol, as well as in acidified methanol (3.6). This degradation was accelerated by sun light. A good stability of stock solutions (>2 years) was observed in 10% acetonitrile in water.

3. Miscellaneous

a) Diquat and Paraquat:

Diquat and Paraquat produce several parent ions within the ion-source, each one fragmenting to various product ions. The most prominent parent ions observed are the doubly charged ones ([M]²⁺), the singly charged protonated ones ([M²⁺ - H⁺]⁺) and the singly charged radical ones ([M]⁺⁺). The relative yields of the various parent ions were shown to greatly depend on the co-eluting matrix, which gives an additional dimension to the matrix-effects. Mass transitions originating from the same parent ion are simmilarly affected by co-eluting matrix (this also applies to the IL-IS), unlike those originating from different parent ions. For a proper equalization of matrix effects and correct quantitations, it is thus paramount to use equivalent parent ions (or even better, equivalent mass-transitions) of native analyte and the corresponsing IL-IS. Generally, measurements achieved when using transitions from doubly charged parent ions

([M]²⁺) were more robust and validation results fluctuating less. Table 15 gives an overview of mass transitions of Diquat while

b) Table **16** shows matrix effects for various mass-transitions in infant formula powder.

Table 15: Individual transitions and MS/MS settings (Sciex API 5500) for Diquat and Paraquat and their respective IL-ISs on Sciex 5500 QTrap ESI(+). Transitions are grouped by parent type.

	Suitable IL-IS	Sensitivity	04 / /)	02//	55 (1)	65 A A	C) (D () ()
	transition	Ranking*	Q1 (m/z)	Q3 (m/z)	DP (V)	CE (V)	CXP (V)
Diquat [M] ²⁺ 92/84	II IS Diguet D	1	92	84.4	61	21	4
Diquat [M] ²⁺ 92/157	IL-IS Diquat D ₈ [M] ²⁺	3	92	157	61	19	12
Diquat [M] ²⁺ 92/78	96/88	6	92	78	61	31	12
Diquat [M] ²⁺ 92/130	30/00	5	92	130	61	25	8
Diquat [M ²⁺ - H ⁺] ⁺ 183/157	IL-IS Diquat D ₈	2	183	157	161	31	10
Diquat [M ²⁺ - H ⁺] ⁺ 183/130	[M ²⁺ - H ⁺] ⁺	4	183	130	161	43	8
Diquat [M ²⁺ - H ⁺] ⁺ 183/168	191/165	5	183	168	161	37	10
Diquat [M ²⁺ - H ⁺] ⁺ 183/78	191/103	4	183	78	161	51	12
Diquat [M] +• 184/128***		4	184	128	60	55	8
Diquat [M] +• 184/106		5	184	106	60	23	8
Diquat [M+•184/78	IL-IS Diquat D ₈	5	184	78	60	65	12
Diquat [M] +• 184/156***	[M] +•	4	184	156	60	29	10
Diquat [M] +• 184/169	192/134	5	184	169	60	27	12
Diquat [M] +• 184/155		5	184	155	60	43	12
Diquat [M] +• 184/168		5	184	168	60	45	12
IL-IS Diquat D ₈ [M] ²⁺ 96/88	-		96	88.4	61	21	4
IL-IS Diquat D ₈ [M ²⁺ - H ⁺] ⁺ 191/165	-		191	165	101	31	10
IL-IS Diquat D ₈ [M] +• 192/134	-		192	134	156	55	8
Paraquat [M] ²⁺ 93/171	IL-IS Paraquat D ₈	2	93	171	46	15	12
Paraquat [M] ²⁺ 93/77	[M] ²⁺	3	93	77	46	31	12
Paraquat [M] ²⁺ 93/155	97/179	4	93	155	46	25	10
Paraquat [M] ²⁺ 93/144	37/173	4	93	144	46	17	8
Paraquat [M]+* 186/171		1	186	171	41	25	12
Paraquat [M]+* 186/77	IL-IS Paraquat D ₈	3	186	77	41	57	4
Paraquat [M]+* 186/155	[M] ^{+•}	4	186	155	41	55	8
Paraquat [M]+* 186/128	194/179	5	186	128	41	57	12
Paraquat [M]+* 186/103		4	186	103	41	49	12
Paraquat [M²+- H+]+ 185/170	IL-IS Paraquat D ₈	**	185	170	61	23	8
Paraquat [M ²⁺ - H ⁺] ⁺ 185/169		**	185	169	61	37	8
Paraquat [M²+- H+]+ 185/144	[<i>M</i> ²⁺ - <i>H</i> +]+ 193/178	**	185	144	61	29	8
Paraquat [M ²⁺ - H ⁺] ⁺ 185/115	133/170	**	185	115	61	55	8
IL-IS Paraquat D ₈ [M] ²⁺ 97/179	-		97	179	46	15	12
IL-IS Paraquat D ₈ [M] +• 194/179	-		194	179	71	27	10
			193	178	86	29	12

^{*} The ranking in this table only refers to the signal to noise ratio. Further experiments are planned to study signal repeatability of various mass transitions also in comparison with the transitions of the respective IL-IS.

^{**} MRMs of singly charged protonated Paraquat ($[M^{2+} H^{+}]^{+}$ 185/#) are typically less sensitive and tend to show more variable signals than the MRMs of the other two parent ions ($[M]^{2+}$ and $[M]^{++}$). Furthermore these transitions tend to be interfered by Diquat. Same applies to the respective MRM of Paraquat D₈ ($[M^{2+} H^{+}]^{+}193/\#$), which is interfered by Diquat D₈.

^{***} Removed from this Table as the signals showed more variability than the ones newly included

Table 16: Exemplary matrix effects of Diquat in infant formula powder considering mass transitions resulting from different parents (the conc. of Diquat and Paraquat in the final extract was $0.015 \, \mu \text{g/mL}$ each)

Analyte	Type of parent ion	Matrix Effect of parent (%)	Matrix Effect of corresponding IL-IS D ₈ (%)
Analyte	Type of parent for	(MRM)	(MRM)
	[M] ²⁺	+57 (92/84)	+54 (96/88)
Diquat	[M ²⁺ - H ⁺] ⁺	-92 <i>(183/157)</i>	-91 (191/165)
	[M] +•	-91 (184/128)	-93 (192/134)
	[M] ²⁺	+111 (93/171)	+112 (97/179)
Paraquat	[M ²⁺ - H ⁺] ⁺	-74 (185/170)	-78 (193/178)
	[M] +•	-81 (186/171)	-78 (194/179)

c) Unwanted retention in the tubing and carry-over effects:

Be aware, that some analytes tend to interact with surfaces within the tubing of the LC-system and reversibly attach to them. This effect contributes to peak tailing and increases and the risk of significant carry-over phenomena. Examples of such analytes are Diquat, Paraquat, Phosphonic acid, Chlorate and Glyphosate. The extend of carry-over effects depends on the condition of the tubing (active sites, degree of surface contamination) as well as the composition of the "transferor" and "transferee" solution. It is not uncommon, that carry-over and tailing effects are more pronounced when injecting blank matrix extracts rather than pure solvent, as the matrix-components contained in the former may displace the analytes from the active sites. For the same reason a standard in pure solvent will typically cause a greater carry-over to the subsequent injection than an equally concentrated standard in blank matrix extract. It is of high importance to **regularly check for carry-over effects** by injecting both blank solvent as well as blank matrix extracts.

Long-term observations suggest the presence of active sites of different affinity strength within the LC-system. For some analytes this might lead to a complete loss of the analyte signals and/or severe tailing. Conditioning/priming of the system with the affected compound via multiple injections (e.g. >10) of a standard solution at a relatively high concentration (e.g. $0.5 \mu g/mL$) can help to saturate the system and reduce such effects.

d) Avoid glass containers for certain analytes:

Keep solutions in plastic vessels **2.15** as several of the compounds covered by this method tend to interact with glass-surfaces (see examples under **2.12**).

4. Handling of column, pre-column and pre-filters:

a) **AS11 and AS11HC**:

<u>Priming and reconditioning of column:</u> before first use, after long storage (e.g. >2 weeks), after injection of 50-100 sample extracts):

- Flush column for 30 min with **100 mmol aqueous Borax solution** (7.62 g di-sodium tetraborate decahydrate in 200 mL water) at 0.3 mL/min <u>OR</u>
- Flush for 1 hour with 30 mM NaOH (240 mg NaOH in 200 mL water) at 0.3 mL/min
- Flush column for 30 min with **Eluent A** (water) at 0.3 mL/minRun system 3-4 times with full gradient (inject standards in matrix)

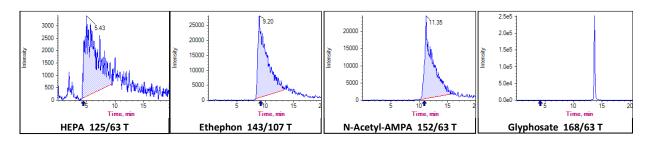
Note: When flushing NaOH or Borax solution through the column make sure that it will go directly into waste and not to the MS ion source!.

<u>Storage of column</u>: If to be stored for short periods (<2 weeks), columns can be put aside after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject

standards in matrix) before starting a sequence. If to be stored for longer periods (e.g. >2 months) recondition the column as described above.

<u>Pre-filters:</u> If pre-filters are used exchange them as soon as backpressure increases significantly. For practical and convenience reasons it is highly recommended to exchange pre-filters when performing other maintenance operations such as reconditioning or pre-column exchange. Losses of Glyphosate, that could be clearly linked to interactions with a dirty pre-filter, have been once observed.

<u>Pre-columns (guard columns):</u> The pre-column should be exchanged as soon as a clear deterioration of the separation performance (worsening of peak-shape) is noticed. The pre-column of M 1.1. needs to be exchanged more often than that of M 1.2 and M 1.3. If after pre-filter exchange (see above) the pressure does not come back to normal levels, the frit of the pre-column should be exchanged.


For further information on the storage and cleanup of column, see: http://www.dionex.com/en-us/web-docs/113497-Man-065463-03-lonPac-AS11-HC-4um-Nov12.pdf

b) **Hypercarb**

Priming and reconditioning of column: Before first use, Hypercarb columns and pre-columns have to be thoroughly primed to cover certain active sites on the surface. Priming with solutions containing planar molecules such as chlorophyll and anthocyans accelerates the priming period. Priming may be performed by multiple injection of a QuPPe extract of spinach or of a grape skin extract solution (prepared by dissolving 100 mg grape skin extract in 20 mL methanol + 1% FA-H₂O 1:1). For a quick equilibration, the LC-conditions shown in Table 17 may be used. 10-15 injections of spinach extracts are typically required for the pre-column and ca. 50 injections for the column and pre-column combined. If possible inject 50 μ L each time. This masking of the active sites is temporary as the activity of the column gradually increases with the injection of solvent or diluted extracts. Following a sequence of injections with low or no matrix load will typically raise the need for intermediate conditioning with extracts to reobtain sufficient column masking. The impact of priming on the chromatographic properties of the column is exemplary shown in Figure 5, Figure 6 and Figure 7.

Table 17: Proposed LC-MS/MS conditions for priming and reconditioning of the Hypercarb column.

uble 17. Proposed EC-MS/MS Conditions for prinning and reconditioning of the Hypercurb column.										
Instrument parameters	Conditions									
Ionisation mode	ESI neg									
Column/temperature	Hypercarb 2.1 x 100 mm 5	μm (P/N 35005-102130); 40°0								
Pre-column	Hypercarb Guard 2.1 x 10 m	Hypercarb Guard 2.1 x 10 mm 5 μm (P/N 35005-102101)								
Pre-filters	e.g. Supelco column saver 2.0 µm Filter (optional)									
Eluent A	1% acetic acid in water + 5% methanol									
Eluent B	1% acetic acid in methanol									
	%A	Flow [mL/min]	Time [min]							
Gradient	100	0.3	0							
Gradient	70	0.3	7							
	100	0.3	7.1							
	100 0.3 12									
Injection volume	50 μL									
MS-System	If possible disconnect the MS-	-System to prevent contaminat	ion of the MS.							

Figure 5: Chromatograms obtained using a new Hypercarb column, poor chromatographic behavior due to strong interactions of analytes with active sites. Same behavior is observed when the pre-column is new.

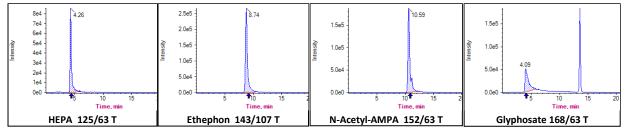
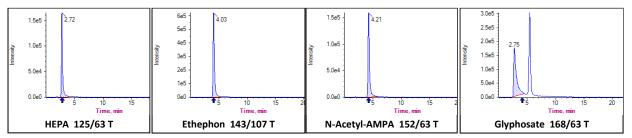



Figure 6: Chromatograms following priming with 25 injections QuPPe extracts of spinach. Injection volume 50 μL per injection

Figure 7: Chromatograms after additional injection of approximately 100 QuPPe-extracts of various fruit and vegetables during normal routine use.

<u>Pre-columns (guard columns)</u>: The pre-column should be exchanged as soon as a clear deterioration of the separation performance (worsening of peak-shape) is noticed. The pre-column of M 1.3 needs to be clearly less often exchanged compared to the pre-columns of M 1.1 and M 1.2. Any exchange of the pre-column requires priming as described above. For this the pre-column does not have to be attached to the column. Connecting several pre-columns in a row and priming them simultaneously is also an option.

Storage of columns: Following normal operation the column can be stored directly after any normal sequence/run (full gradient). Run system 3-4 times with full gradient to reactivate the column (inject standards in matrix) before starting the sequence. If to be stored for longer periods (e.g. >2 months) it is highly recommended to recondition the column as described above.

<u>Pre-filters</u>: If pre-filters are used exchange them as soon as backpressure increases significantly. For practical and convenience reasons it is highly recommended to exchange pre-filters when performing other maintenance operations such as reconditioning or pre-column exchange. If after pre-filter exchange (see above) the pressure does not come back to normal levels, the frit of the pre-column may need to be exchanged.

Note: Losses of Glyphosate, that could be clearly linked to interactions with a dirty pre-filter, have been once observed.

c) Torus DEA

Priming:

The Torus DEA column should be conditioned before use following the manufacturer's **Start-up Guide**, which foresees flushing the column with a 5 mmol/L solution of Na₂EDTA. Afterwards it is important to prime thoroughly.

d) Raptor Polar X

Priming:

The manufacturing company of this column recommends "passivating" the LC-system with a methanolic solution of Methylenediphosphonic Acid (Medronic Acid) (1984-15-2).

5.6.2. Method 1.1 (M1.1): "Gly&Co. AS 11"

Table 18: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite), Glufosinate, MPPA (Glufosinate metabolite), N-Acetyl-Glufosinate (Glufosinate metabolite), Phosphonic acid.

Instrument parameters	Conditions	Conditions									
Ionization mode	ESI neg										
Column/temperature (see notes)	Dionex IonPac AS 11 2 x 250	0 mm (P/N 44	077); 40°C								
Pre-column	Dionex IonPac AG 11 2 x 50	mm (P/N 440	079)								
Pre-filters	e.g. Supelco column saver 2.0) μm Filter (op	tional)								
Eluent A	Water (3.1)										
	1 mM citric acid in water adju	usted to pH 11	with dimethylamine	(DMA)							
Eluent B	Note: You will need approx 0	.5 mL DMA s	olution for 500 mL 1 r	mM citric acid in water							
	Make sure your eluent filters	s can handle a	Ikaline solvents (see	notes)!!							
	%A	Flow [mL/m	in]	Time [min]							
	0.3										
Gradient	50	0.3		8							
Gradient	50	0.3		15							
	100	0.3		15.1							
	100	0.3		23							
Injection volume	10-20 μL										
injection volume	(Note: in case of analyzing or	ly Ethephon 5	6 μL may be enough -	depending on the instrument)							
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS-portion	* + one level a	at the reporting limit								
	Compound		Mass Transitions (n	n/z)							
	Glyphosate		168/63, 168/124, 168/150, 168/81								
	Glyphosate-13C ₂ ,15N ₁ (IL-IS)		171/63, 171/126								
	AMPA		110/63, 110/79, 110/81**								
	AMPA-13C ₁ 15N ₁ (IL-IS)		112/63, 112/81								
	Ethephon		143/107, 143/79, 14	45/107							
	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (o	ptional, in case of interferences)							
Acquired mass transitions (m/z)	HEPA		125/79, 125/95, 125	5/63							
Acquired mass transitions (m/2)	HEPA-D ₄ (IL-IS)		129/79, 129/97								
	Glufosinate		180/63, 180/136, 1	80/85, 180/95							
	Glufosinate-D₃ (IL-IS)										
	N-Acetyl-Glufosinate		222/63, 222/59, 22	2/136							
	N-Acetyl-Glufosinate-[acetyl]D ₃ (IL-IS)	225/63, 225/137								
	N-Acetyl-Glufosinate-[methy	/l]D₃ (IL-IS)	225/63								
	МРРА		151/63, 151/107, 151/133								
	MPPA-D ₃ (IL-IS)		154/63, 154/136								

AMPA: Aminomethylphosphonic acid;

MPPA: 3-Methylphosphinicopropionic acid;

HEPA: 2-Hydroxyethylphosphonic acid (= hydroxy-ethephon),

Hints on Method 1.1

- 1. **pH-related precautions:** As the pH of the mobile phase is quite high, it is recommendable to **use alkali-compatible components**, e.g. metal frits instead of silica frits in the Eluent B reservoir; borosilicate 3.3 bottles instead of glass bottles for eluent B; rotor-seals from alkali-persistent materials, such as PEEK (polyetherketone) or Tefzel, rather than Vespel.
- 2. Handling of column, pre-column and pre-filters: See 5.6.1. point 4.a)
- 3. For general hints on analytes: See 5.6.1

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

^{**} See also 5.6.1.

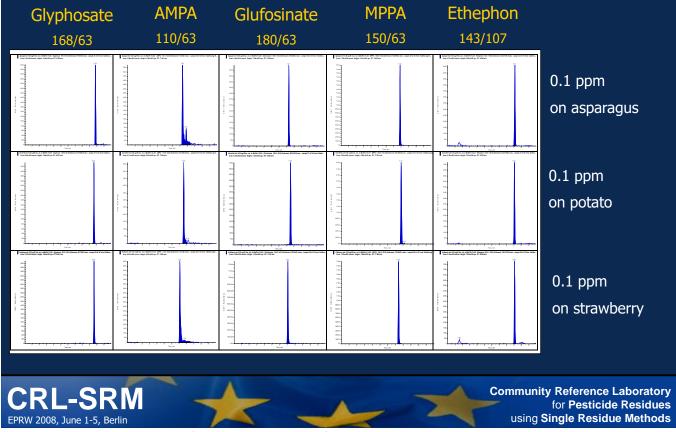


Figure 8: Typical chromatograms of Glyphosate, AMPA, Glufosinate, MPPA and Ethephon spiked on blank-QuPPe extracts

Figure 9: Typical chromatograms of HEPA in real samples

5.6.3. Method 1.2 (M1.2): "Gly&Co. AS 11-HC"

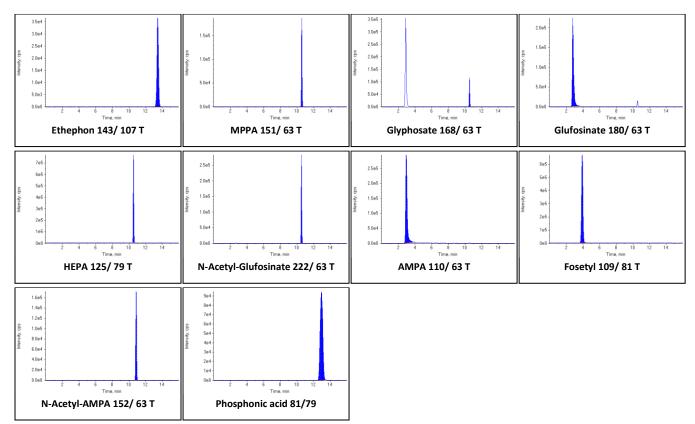
Table 19: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite), Glufosinate, MPPA (Glufosinate metabolite), N-Acetyl-Glufosinate (Glufosinate metabolite), Fosetyl-Al, N-Acetyl-AMPA and Phosphonic acid.

pnonic acia.						
Instrument parameters	Conditions					
Ionization mode	ESI neg					
Column/temperature	Dionex IonPac AS 11-HC 2	x 250 mm (P/	'N 052961); 40°C			
Columny temperature	(see also notes below)					
Pre-column	Dionex IonPac AG11-HC 2 x	x 50 mm (P/N	l 052963)			
Pre-filters	e.g. Supelco column saver 2.	0 μm Filter (o	ptional)			
Eluent A	water (3.1)					
Eluent B	1 mM tribasic Ammonium ci	trate in water				
	%A	Flow [mL/r	min]	Time [min]		
	100	0.3		0		
Gradient	0	0.3		8		
Gradient	0	0.3		16		
	100	0.3		16.1		
	100	0.3		23		
Injection volume	10 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS-portion	n* + one level	at the reporting limit			
	Compound		Mass Transitions (m/z)			
	Glyphosate		168/63, 168/124, 168/150, 168/81			
	Glyphosate-13C ₂ ,15N (IL-IS)		171/63, 171/126			
	AMPA		110/63, 110/79, 110	0/81**		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA		152/63, 152/79, 152/110			
	Ethephon	Ethephon		143/107, 143/79, 145/107		
	Ethephon-D ₄ (IL-IS)	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (optional, in case of interferences)		
	HEPA		125/79, 125/95, 125/63			
	HEPA-D ₄ (IL-IS)		129/79, 129/97			
Acquired mass transitions (m/z)	Glufosinate		180/63, 180/136, 180/85, 180/95			
	Glufosinate-D₃ (IL-IS)		183/63, 183/98			
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136			
	N-Acetyl-Glufosinate-[acety	l]D₃ (IL-IS)	225/63, 225/137			
	N-Acetyl-Glufosinate-[meth	yl]D ₃ (IL-IS)	225/63			
	MPPA		151/63, 151/107, 1	51/133		
	MPPA-D ₃ (IL-IS)		154/63, 154/136			
	Fosetyl-Al:		109/81, 109/63 (Fo:	setyl)		
	Fosetyl-Al-D ₁₅ (IL-IS):		114/82, 114/63 (Fo	setyl-D ₅)		
	Phosphonic acid***		81/79, 81/63			
	Phosphonic acid-18O ₃ (IL-IS)		87/85, 87/67			

AMPA: Aminomethylphosphonic acid;

MPPA: 3-Methylphosphinicopropionic acid;

HEPA: 2-Hydroxyethylphosphonic acid (=hydroxy-ethephon)


^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

^{**} See also 5.6.1

^{***} See also 5.6.1

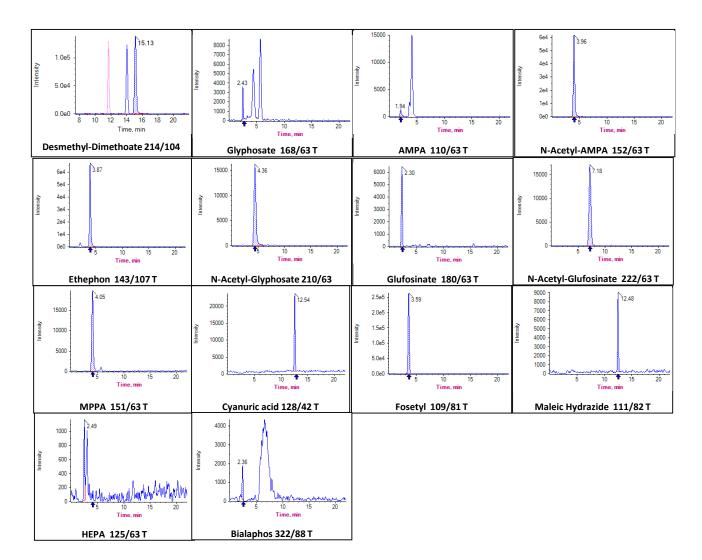
- 1. Handling of column, pre-column and pre-filters: See 5.6.1. point 4.a)
- 2. **Peak splitting:** Using this M 1.2 some compounds (e.g. Glyphosate) in some commodities tend to give two sharp peaks. The corresponding IL-IS typically behaves equally, so that quantification with any of the two peaks remains accurate
- 3. Intereference of Phosphonic acid by Fosetyl: See 5.6.1.
- 4. Intereference of Phosphonic acid by Phosphoric acid: See 5.6.1.
- 5. IL-IS of N-Acetyl-Glufosinate D₃: See 6
- 6. For general hints on analytes: See 5.6.1

Figure 10: Typical chromatograms of Ethephon, HEPA, Glyphosat, AMPA, Glufosinate, MPPA, N-Acetyl-AMPA, N-Acetyl-Glufosinate, Fosetyl-Al and Phosphonic acid at 0.1 mg/L in methanol with 1% formic acid.

5.6.4.Method 1.3 (M1.3): "Gly&Co. Hypercarb"

Table 20: Proposed LC-MS/MS conditions for Ethephon, HEPA (Ethephon metabolite), Glyphosat, AMPA (Glyphosate metabolite), N-Acetyl-Glyphosate (Glyphosate metabolite), N-Acetyl-AMPA (Glyphosate metabolite), Glufosinate, MPPA (Glufosinate metabolite), N-Acetyl-Glufosinate (Glufosinate metabolite), Fosetyl-Al, Maleic Hydrazide, Cyanuric acid and Bialaphos.

Instrument parameters	Conditions					
Ionization mode	ESI neg					
Column/temperature	Hypercarb 2.1 x 100 mr	m 5 μm (P/N 3	5005-102130); 40°C			
Pre-column	Hypercarb Guard 2.1 x	10 mm 5 μm (P/N 35005-102101)			
Pre-filters	e.g. Supelco column save	r 2.0 μm Filter (c	ptional)			
Eluent A	1% acetic acid in water +	5% methanol				
Eluent B	1% acetic acid in methan	1% acetic acid in methanol				
	%A	Flow [mL/	min]	Time [min]		
	100	0.2		0		
Gradient	70	0.2		10		
	70	0.4		11		
Gradient	70	0.4		18		
	10	0.4		19		
	10	0.4		22		
	100	0.2		22.1		
	100	0.2		30		
Injection volume	5 μL					
Dilution	Not regularly; in case of s	strong matrix int	erferences 5-10-fold (see also Hints 8.)		
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS-por	tion* + one leve	at the reporting limit			
	Compound	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81			
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126			
	AMPA**		110/63, 110/79, 110/81 **			
	AMPA-13C,15N (IL-IS)		112/63, 112/81			
	N-Acetyl-AMPA:		152/63, 152/79, 152/110			
	N-Acetyl-Glyphosate		210/63, 210/150, 210/79, 210/148			
	N-Acetyl-Glyphosate-D₃ (IL-IS)		213/63, 213/153			
	Ethephon		143/107, 143/79, 145/107			
	Ethephon-D ₄ (IL-IS)		147/111, 147/79			
	HEPA		125/79, 125/95, 125/63			
	HEPA-D ₄ (IL-IS)		129/79, 129/97			
	Glufosinate		180/63, 180/136, 180/85, 180/95			
Acquired mass transitions (m/z)	Glufosinate-D ₃ (IL-IS)		183/63, 183/98			
Acquired mass transitions (m/2)	N-Acetyl-Glufosinate:		222/63, 222/59, 222/136			
	N-Acetyl-Glufosinate-[ac	etyl]D ₃ (IL-IS)	225/63, 225/137			
	N-Acetyl-Glufosinate-[m	ethyl]D₃ (IL-IS)	225/63			
	MPPA		151/63, 151/107, 151/133			
	MPPA-D ₃ (IL-IS)		154/63, 154/136			
	Fosetyl-Al		109/81, 109/63 (de			
	Fosetyl-Al-D ₁₅ (IL-IS)			tected as Fosetyl-D ₅)		
	Maleic Hydrazide		111/82, 111/42, 111/55, 111/83			
	Maleic Hydrazide-D ₂ (IL-I		113/42, 113/85			
	Maleic Hydrazide- ¹³ C ₄ (IL	IS)	115/87, 115/58			
	Cyanuric acid		128/42, 128/85			
	Cyanuric acid-13C ₃		131/43, 131/87			
	Bialaphos		322/88, 322/94, 322/134			
	Desmethyl-Dimethoate		214/104, 214/95, 2	14/136		


^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

^{**} See **also 5.6.1**

^{***} See also 5.6.1

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a) and 4.b)
- 2. Mass spectrometric interference of AMPA and Fosetyl: See 5.6.1
- 3. Intereference of Phosphonic acid by Fosetyl: See 5.6.1
- 4. Degradation of Ethephon to Phosphonic acid: See 5.6.1
- 5. Dilution: For certain matrices it can be beneficial to dilute the sample extract 5-10-fold before injection or to inject smaller volumes (1-2 μL). Dilution of the sample extract is highly recommended for matrices containing high amounts of protein such as oilseeds, pulses and commodities of animal origin in general. In routine analysis there is an option run undiluted extracts for screening and in case of a positive result repeat measurement with a diluted extract (provided that there is no issues with false negatives, in non-diluted extracts are injected, see also 5.6.1).
- 6. IL-IS of N-Acetyl-Glufosinate D₃ see 6
- 7. **Reference**: In case of the determination of Fosetyl and Phosphonic acid on the Hypercarb-column, we refer to the patent of D. Rosati and C. Venet from Bayer CropScience (Patent-No. WO 2006079566 A1).
- 8. For general hints on analytes: See 5.6.1

Figure 11: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl, Maleic Hydrazide, Cyanuric acid and Bialaphos at 0.02 mg/kg on apple extract and Desmethyl-Dimethoate at 0.03 mg/kg on cherry extract.

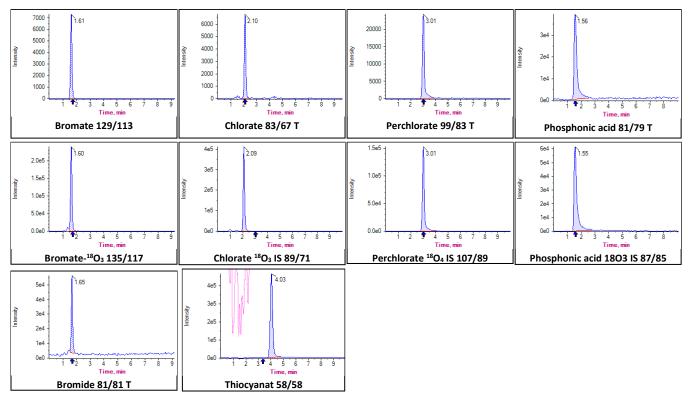

5.6.5.Method 1.4 (M1.4): "PerChloPhos"

Table 21: Proposed LC-MS/MS conditions for Phosphonic acid (Fosetyl metabolite), Perchlorate, Chlorate, Bromide and Bromate.

Instrument parameters	Conditions					
Ionisation mode	ESI neg					
Column/temperature	Hypercarb 2.1 x 100 mm 5	μm (P/N 3500	5-102130); 40°C			
Pre-column	Hypercarb Guard 2.1 x 10 m	Hypercarb Guard $2.1 \times 10 \text{ mm } 5 \mu\text{m}$ (P/N 35005-102101)				
Pre-filters	e.g. Supelco column saver 2.0	e.g. Supelco column saver 2.0 µm Filter (optional)				
Eluent A	1% acetic acid in water + 5% r	methanol				
Eluent B	1% acetic acid in methanol					
	%A Flow [mL/min] Time [min]					
Gradient	100	0.4		0		
Gradient	70	0.4		10		
	100	0.4		10.1		
	100	100 0.4 15				
Injection volume	5 μL					
Dilution	5-fold dilution with methanol					
	(1 μL sample extract + 4 μL m	ethanol + 1% for	rmic acid)			
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion*	+ one level at t	he reporting lin	nit		
	Compound		Mass Transitions (m/z)			
	Bromate		127/95, 129/113, 127/111, 129/97			
	Bromate-18O ₃ (IL-IS)		135/117			
	Bromide*		81/81, 79/79			
	Chlorate		83/67, 85/69			
Acquired mass transitions	Chlorate-18O ₃ (IL-IS)		89/71, 91/73			
	Perchlorate		99/83, 101/85	5		
	Perchlorate-18O ₄ (IL-IS)		107/89, 109/9	91		
	Phosphonic acid		81/79, 81/63			
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67			
	Thiocyanate		58/58			
	Thiocyanate ¹³ C ¹⁵ N		60/60			

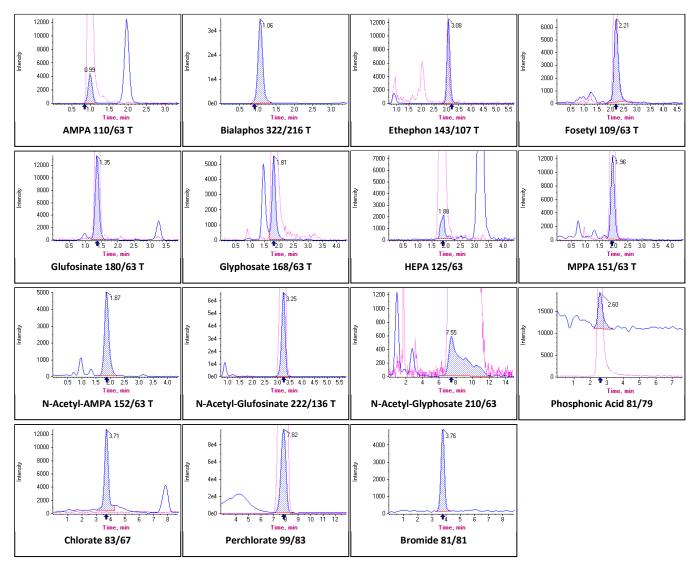
^{*} A 5-fold dilution is used for Bromide screening. For quantification purposes where Bromide exceeds approx. 1 mg/kg, the sample extracts should be diluted e.g. 250-fold (50-fold manually and 5-fold by the HPLC).

- 1. Handling of column, pre-column and pre-filters: see 5.6.1 point 4.a)4.b).
- 2. Cross-contamination and other issues on Perchlorate and Chlorate: See 5.6.1
- 3. Degradation of Ethephon and Fosetyl to Phosphonic acid: See 5.6.1.
- 4. Intereference of Phosphonic acid by Phosphoric acid and impact of dilution: See 5.6.1.
- 5. Improving selectivity of Bromide analysis: See 5.6.1.
- 6. For general hints on analytes: See 5.6.1

Figure 12: Chromatograms of Bromate (0.02 mg/kg) in currant extract, Bromide (1 mg/kg) in currant extract, Phosphonic acid (0.05 mg/kg) in currant extract, Perchlorate (0.01 mg/kg) in currant extract, Chlorate (0.01 mg/kg) in currant extract and Thiocyanate (1 mg/kg) in porree extract.

5.6.6.Method 1.5 (M1.5): "Gly&Co. on Trinity Q1"

Table 22: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-glyphosate, Ethephon, HEPA, Glufosinate, N-Acetyl-Glufosinate, MPPA and Fosetyl-Al, Maleic Hydrazide, Cyanuric acid, Bialaphos, Bromide, Chlorate, Perchlorate, Phosphonic acid


Instrument parameters	Conditions					
Ionisation mode	ESI neg					
Column/temperature	Acclaim Trinity Q1 100x2	2.1 mm; 3 μm (P/	N 079717; Thermo Fis	her Scientific); 30 °C		
Pre-column				244; Thermo Fisher Scientific)		
Pre-filters	e.g. Supelco column save			·		
	50 mM Ammonium form					
Eluent A				L water, add 200 mL ACN		
Eluent B	Acetonitrile					
	Time [min]	Flow [mL/	min1	%A		
	0	0.5	,	100		
	10	0.5		100		
Gradient	10.1	0.5		18.2 (≙ 90 % acetonitrile)		
	13	0.5		18.2 (≙ 90 % acetonitrile)		
	13.1	0.5		100		
	18	0.5		100		
Injection volume	10 μL	0.5		100		
Dilution	Not regularly; in case of	many matrix into	erferences 5-10-fold			
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS por	rtion* + one leve				
	Compound		Mass Transitions (m	• •		
	Glyphosate		168/63, 168/124, 16 171/63, 171/126	58/150, 168/81		
		Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)				
	AMPA**	AMPA**)/81**		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA:	•		152/63, 152/79, 152/110		
	N-Acetyl-Glyphosate			210/63, 210/150, 210/79, 210/148 213/63, 213/153		
	N-Acetyl-Glyphosate-D ₃	N-Acetyl-Glyphosate-D ₃ (IL-IS)				
	Ethephon	Ethephon		15/107		
	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (o _l	otional, when interferences)		
	НЕРА		125/79, 125/95, 125	5/63		
	HEPA-D ₄ (IL-IS)	HEPA-D ₄ (IL-IS)				
	Glufosinate:		180/63, 180/136, 180/85, 180/95			
	Glufosinate-D ₃ (IL-IS):		183/63, 183/98			
	N-Acetyl-Glufosinate		222/63, 222/59, 222	2/136		
	N-Acetyl-Glufosinate-[ad	cetyl]D₃ (IL-IS)	225/63, 225/137			
0in-d turn-iti (()	N-Acetyl-Glufosinate-[m	nethyl]D₃ (IL-IS)	225/63			
Acquired mass transitions (m/z)	MPPA:		151/63, 151/107, 151/133			
	MPPA-D ₃ (IL-IS)		154/63, 154/136			
	Fosetyl-Al		109/81, 109/63 (each detected as Fosetyl)			
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (each detected as Fosetyl- D ₅)			
	Maleic Hydrazide		111/82, 111/42, 111/55, 111/83			
	Maleic Hydrazide-D ₂ (IL-	-IS)	113/42, 113/85			
	Maleic Hydrazide- ¹³ C ₄ (I	L-IS)	115/87, 115/58			
	Cyanuric acid		128/42, 128/85			
	Cyanuric acid-13C ₃		131/43, 131/87			
	Bialaphos		322/88, 322/94, 322	2/134		
	Bromide*		81/81, 79/79			
	Chlorate		83/67, 85/69			
	Chlorate-18O ₃ (IL-IS)		89/71, 91/73			
	Perchlorate		99/83, 101/85			
	Perchlorate-1804 (IL-IS)		107/89, 109/91			
	Phosphonic acid		81/79, 81/63			
	Phosphonic acid ¹⁸ O ₃ (IL	IS)	87/85, 87/67			
	zed collision energy for Brom					

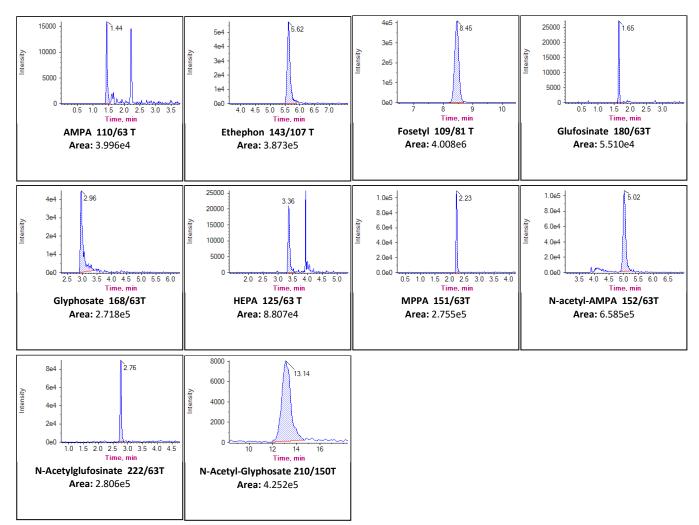
^{*} It is recommended to use an optimized collision energy for Bromide as described in 5.6.1.

Hints on Method 1.5

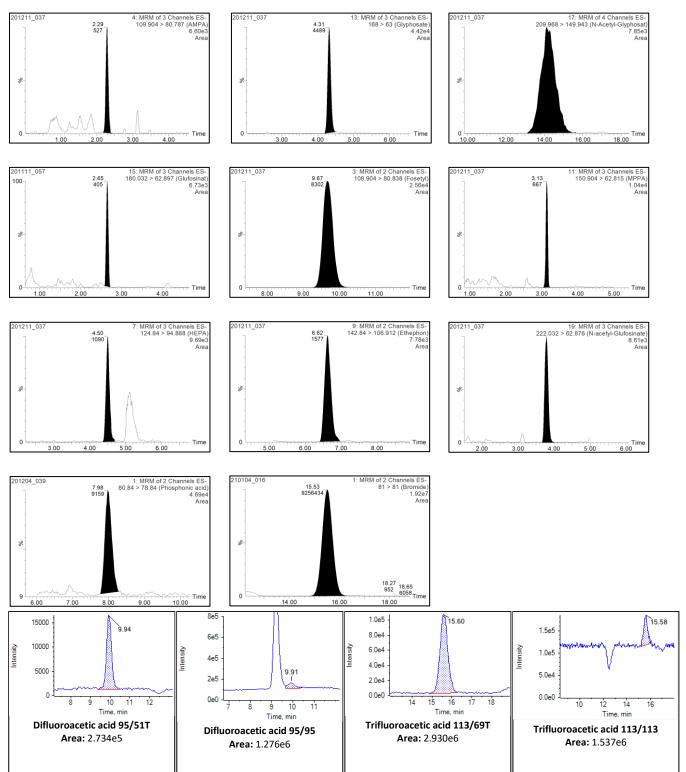
1. For general hints on analytes see 5.6.1

Figure 13: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl, Maleic Hydrazide, Cyanuric acid, Bialaphos and Bromide at 0.02 mg/kg each, Phosphonic acid at 0.05 mg/kg, as well as Chlorate and Perchlorate at 0.005 mg/kg each, all in black currant extract.

5.6.7. Method 1.6 "Gly&Co. on Torus DEA; (M1.6a)" or "Gly&Co. on Anionic Polar Pesticide Column (APPC); (M1.6b)"


Table 23: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, N-Acetyl-Glufosinate, MPPA, Fosetyl-Al, Trifluoroacetic acid, Phosphonic acid and Bromide.

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
	M1.6a: Waters Torus™DEA 2.1 mm	n x 100 r	mm: 1.7 um: 50 °C		
Column/temperature	M1.6b: Waters Anionic Polar Pestic		· · · · · · · · · · · · · · · · · · ·	2.1 mm x 100 mm; 50 °C	
Pre-column	M1.6a: Waters Torus™DEA VanGua	ard™ 2.1	. mm x 5 mm; 1.7 μm		
Pre-column	M1.6b: Waters Anionic Polar Pesti	cide Van	nGuard Cartridge, 130Å, 5	μm, 2.1 mm X 5 mm	
Pre-filters	Waters ACQUITY UPLC Column In-L	ine Filte	er Kit [205000343]		
Eluent A	1.2% formic acid in water				
Eluent B	0.5 % formic acid in Acetonitrile				
	%A Flo	ow [mL/	min]	Time [min]	
	10 0.5	5		0	
Gradient	10 0.5	5		0.5	
	80 0.5	5		1.5	
	90 0.5	5		4.5	
	90 0.5	5		17.5	
	10 0.5	5		17.6	
	10 0.5	5		23	
Injection volume	10 μL				
	e.g. 0.05 or $0.1 \mu\text{g/IS}$ portion* + on	e level a	at the reporting limit;		
Calibration standards and levels	Standard solutions of Fosetyl and Ethephon (and their IL-ISs) may be contaminated w				
	Phosphonic acid which may potent	Phosphonic acid which may potentially lead to false positives or shifted calibration, see			
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)			
	AMPA		110/63, 110/79, 110/81		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	N-Acetyl-AMPA:		152/63, 152/79, 152/11	10	
		N-Acetyl-Glyphosate		79, 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS)		213/63, 213/153		
	Ethephon		143/107, 143/79, 145/107		
	Ethephon-D ₄ (IL-IS)		147/111, 147/79 (optional, when interferences)		
	НЕРА		125/79, 125/95, 125/63		
	HEPA-D ₄ (IL-IS)		129/79, 129/97		
Acquired mass transitions (m/z)	Glufosinate		180/63, 180/136, 180/85, 180/95		
,	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl]D ₃ (IL	-	225/63, 225/137		
	N-Acetyl-Glufosinate-[methyl]D ₃ (l	IL-IS)	225/63		
	MPPA		151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS)		154/63, 154/136 109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl Al D. (III IS)			• •	
	Fosetyl-Al-D ₁₅ (IL-IS) Trifluoroacetic acid (TFA)		114/82, 114/63 (each d	•	
			113/69, 113/113, <mark>69/19</mark>	,	
	Trifluoroacetic acid -13C ₂ (IL-IS)		115/70 81/79 81/63		
	Phosphonic acid Phosphonic acid 180 (III IS)		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS) Bromide		87/85, 87/67		
			81/81, 79/79		
	Difluoroacetic acid (DFA) Difluoroacetic acid -13C (IL-IS)		95/51, 95/95 97/52		
	Dilluoi bacetic aciu - "C (IL-13)		31/32		



Hints on Method 1.6a and Method 1.6b

- 1. Handling of column, pre-column and pre-filters: see 5.6.1 point 4.a)4.c)
- 2. **Maleic hydrazide and Cyanuric acid on Torus DEA**: The intention was to cover all analytes of M1.3 with M1.6. During method development, however, it became clear that Maleic hydrazide and Cyanuric acid showed a very poor retention on this column, with retention times close to the dead-time, heavy intereferences of matrix components on peak shapes and intensities (signal suppression). Figure **16** shows exemplarily chromatograms obtained upon injection of standards in solvent and in extracts of plum, broccoli, soy and onion at 0.1 μg/mL. Proper evaluation of the peaks at low concentrations is often not possible. Fortunately Maleic Hydrazide can also be covered by M 4.2 (5.6.17), whereas Cyanuric acid is not regulated.
- 3. For general hints on analytes: See 5.6.1

Figure 14: Chromatograms of Glyphosate, AMPA, N-Acetyl-AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl at 0.04 mg/kg on cucumber extract using <u>a:</u> Waters Torus™DEA 2.1 mm x 100 mm.

Figure 15: Chromatograms of Glyphosate, AMPA, N-Acetyl-Glyphosate at 0.06 mg/kg, Glufosinate at 0.036 mg/kg, HEPA, MPPA, N-Acetyl-Glufosinate at 0.024 mg/kg, Ethephon, Fosetyl at 0.012 mg/kg, all in strawberry extract and Phosphonic acid at 0.06 mg/kg, Bromide at 6 mg/kg both in lemon extract; difluoroacetic acid at 0.02 mg/kg, trifluoroacetic acid at 0.05 mg/kg in grape extract using b: Waters Anionic Polar Pesticide Column, 130Å, 5 μm, 2.1 mm x 100 mm.

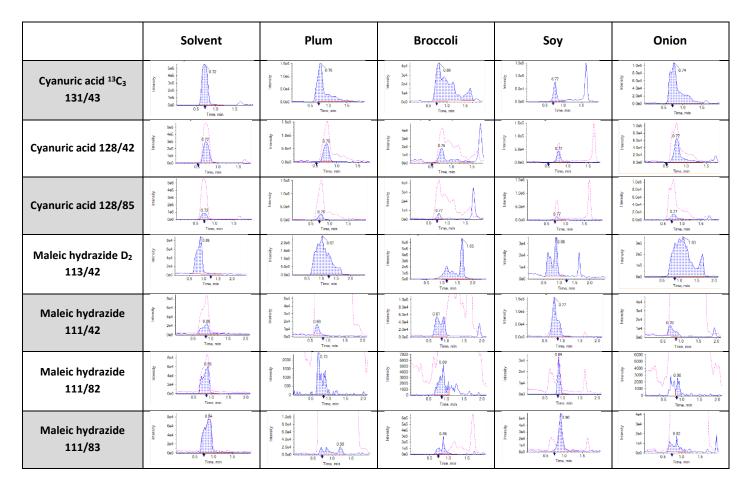
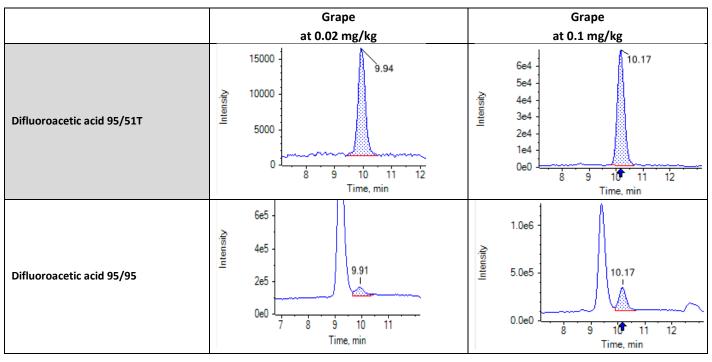
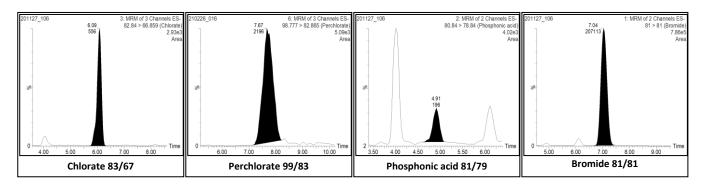
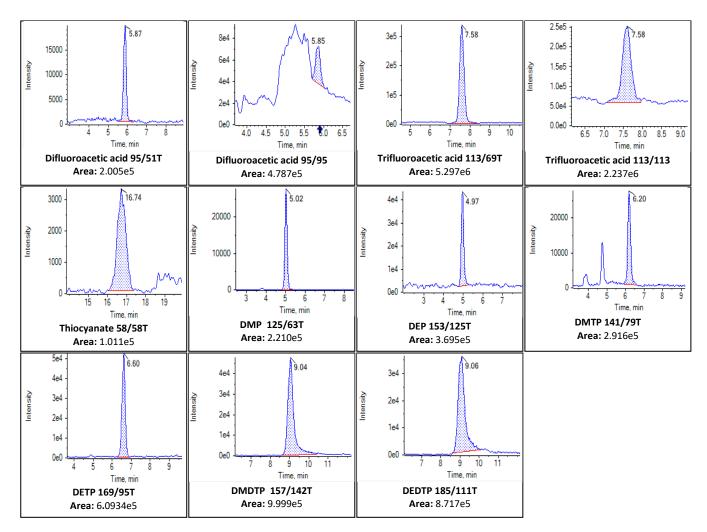



Figure 16: Exemplary peak shapes of Cyanuric acid and Maleic hydrazide in solvent-based standards and in standards of plum, broccoli, soy and onion extracts at 0.1 μg/mL (Please also read the note under "Hints on Method 1.6a and Method 1.6b" above)

Figure 17: Chromatograms of difluoroacetic acid **at 0.02 mg/kg and 0.1** in grape extract using \underline{b} : Waters Anionic Polar Pesticide Column, 130Å, 5 μ m, 2.1 mm x 100 mm. Sensitivity of the parent/parent trace is compromised at 0.02 mg/kg due to interferences, but satisfying at 0.1 mg/kg.



5.6.8.Method 1.7 "PerChloPhos on Torus DEA; (M1.7a)" or "PerChloPhos on Anionic Polar Pesticide Column (APPC); (M1.7b)"


Table 24: Proposed LC-MS/MS conditions for PerChlorate, Chlorate, Phosphonic acid and Bormide

Instrument parameters	Conditions						
Ionisation mode	ESI neg						
		M1.7a			M1.7b		
Column /town and water	Waters Tor	us™DEA 2.1 mm	x 100 mm; 1	7 Waters A	nionic Polar Pestici	de Column, 130	
Column/temperature	μm; 50 °C			5 μm, 2.1 mm x 100 mm; 50 °C			
Pre-column	Waters Tor	rus™DEA VanGuard	d™ 2.1 mm x	5 Waters A	nionic Polar Pestici	de VanGuard Ca	
Pre-column	mm; 1.7 μm	n		tridge, 13	0Å, 5μm, 2.1 mm λ	(5 mm	
Pre-filters	Waters ACC	Waters ACQUITY UPLC Column In-Line Filte			CQUITY UPLC Colu	umn In-Line Filt	
. To interior	Kit [205000	•		Kit [2050	•		
Eluent A		c acid + 10 mmol a	ammonium fo		nic acid + 15 mmc	ol ammonium fo	
	mate in wat			mate in w			
Eluent B	0.5 % formi	c acid in Acetonitri	le	0.5 % for	mic acid in Acetonii	trile	
	%A	Flow [mL/min]	Time [min]	%A	Flow [mL/min]	Time [min]	
	10	0.5	0	10	0.5	0	
Gradient	10	0.5	0.5	10	0.5	0.5	
	80	0.5	1.5	80	0.5	1.5	
	90	0.5	4.5	90	0.5	4.5	
	90	0.5	17.5	90	0.5	13.5	
	10	0.5	17.6	10	0.5	13.6	
tuta etta o calcona	10	0.5	23	10	0.5	23	
Injection volume	10 μL						
Calibration standards and levels		0.1 μg/IS portion +	one level at	, ,			
	·			Mass Transitions (m/z)			
	Bromide			81/81, 79/79			
	Chlorate	o (11 16)		83/67, 85/69 80/71 01/72			
		Chlorate- ¹⁸ O ₃ (IL-IS)		89/71, 91/73 99/83, 101/85			
		Perchlorate Perchlorate-18O ₄ (IL-IS)		107/89, 109/91			
	Phosphonic			81/79, 81/63			
	•	acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67			
		Trifluoroacetic acid (TFA)			113/69, 113/113, <mark>69/19</mark>		
		etic acid - ¹³ C ₂ (IL-IS	5)	115/70			
Acquired mass transitions (m/z)		etic acid (DFA)	,	95/51, 95/95			
	Difluoroace	etic acid -13C (IL-IS)		97/52			
	Thiocyanat	e		58/58			
	Thiocyanat	e ¹³ C ¹⁵ N (IL-IS)		60/60			
	Dimethyl p	hosphate (DMP)		125/63, 125/1	.10, 125/62		
	Diethyl pho	osphate (DEP)		153/125, 153,	79, 153/63		
		hyl thiophosphate		141/79, 141/4	, ,		
	-	l thiophosphate (D		169/95, 169/1	· ·		
	*	hyl dithiophosphat		157/142, 157/			
	O,O-Diethy	l dithiophosphate	(DEDTP)	185/111, 185/79, 185/157			

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a)4.c)
- 2. Intereference of Phosphonic acid by Phosphoric acid: See 5.6.1
- 3. For general hints on analytes: See 5.6.1

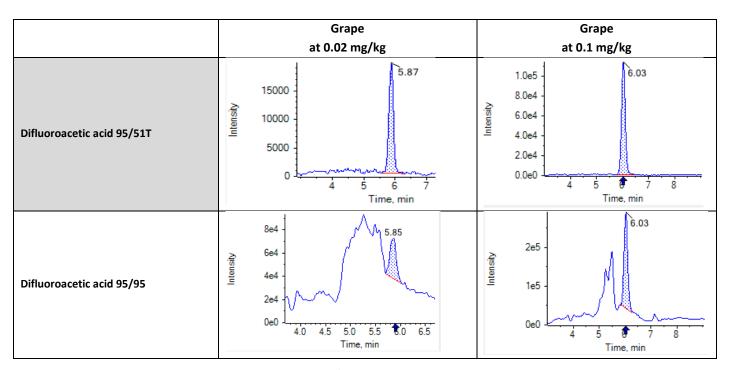
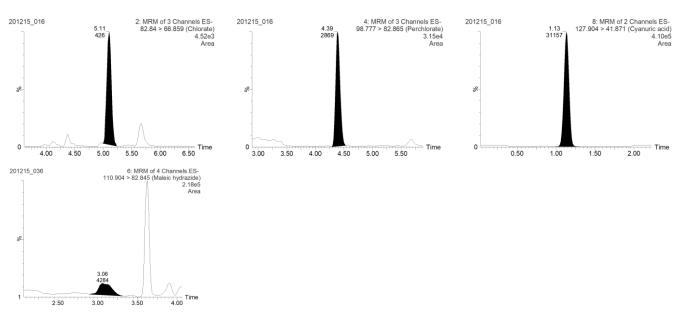

Figure 18: Chromatograms of Chlorate at 0.03 mg/kg, Perchlorate at 0.01 mg/kg, Phosphonic acid at 0.05 mg/kg and Bromide at 5.0 mg/kg, all in lemon extract; using b: Waters Anionic Polar Pesticide Column, 130Å, $5 \mu m$, $2.1 mm \times 100 mm$; $50 \, ^{\circ}$ C.

Figure 19: Chromatograms of Difluoroacetic acid at 0.02 mg/kg, Trifluoroacetic acid at 0.05 mg/kg, Thiocyanate at 0.02 mg/kg, Diethylphosphate at 0.025 mg/kg and Diethyl Thiophosphate, O,O-Dimethyl Dithiophosphate, O,O-Dimethyl Dithiophosphate, Dimethyl Phosphate at 0.01 mg/kg in grape extract using b: Waters Anionic Polar Pesticide Column, 130Å, $5 \mu m$, $2.1 mm \times 100 mm$; $50 \, ^{\circ}$ C.

Figure 20: Exemplary chromatograms of Phosphonic acid, Perchlorate, Chlorate and Bromide at 0.01 mg/kg on Grape and Onion using a: Waters Torus™DEA 2.1 mm x 100 mm; 1.7 μm; 50 °C.

Figure 21: Chromatograms of difluoroacetic acid **at 0.1 mg/kg** in grape extract using <u>b:</u> Waters Anionic Polar Pesticide Column, 130Å, 5 μ m, 2.1 mm \times 100 mm. Sensitivity of the parent/parent trace is compromised at 0.02 mg/kg due to interferences, but satisfying at 0.1 mg/kg.

5.6.9. Method 1.8 (M1.8): "PerChloCyanMalein on Anionic Polar Pesticide Column (APPC)"


Table 25: Proposed LC-MS/MS conditions for Perchlorate, Chlorate, Cyanuric acid and Maleic hydrazide

Instrument parameters	Conditions					
Ionisation mode	ESI neg					
Column/temperature	Waters Anionic Polar Pesticide	Column, 13	0Å, 5 μm, 2.1 mm x 100 m	nm; 50 °C		
Pre-column	Waters Anionic Polar Pesticide	Waters Anionic Polar Pesticide VanGuard Cartridge, 130Å, 5μm, 2.1 mm X 5 mm				
Pre-filters	Waters ACQUITY UPLC Column	In-Line Filte	er Kit [205000343]			
Eluent A	1.2% formic acid and 50mM NH	I₄-formate i	n water			
Eluent B	85 % ACN : 10 % MeOH : 5 % w	ater				
	%A	Flow [mL/	min]	Time [min]		
	0	0.5		0		
Gradient	0	0.5		1.5		
Gradient	70	0.5		4.5		
	70	0.5		7.0		
	0	0.5		7.1		
	0	0.5		15		
Injection volume	10 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* -	one level a	it the reporting limit			
	Compound		Mass Transitions (m/z)			
	Cyanuric acid	128/42, 128/85				
	Cyanuric acid ¹³ C ₃ (IL-IS)		131/43			
	Chlorate		83/67, 85/69, 83/51			
Acquired mass transitions (m/z)	Chlorate-18O ₃ (IL-IS)		89/71, 91/73			
Acquired mass transitions (m/2)	Perchlorate		99/83, 101/85, 99/67			
	Perchlorate-18O ₄ (IL-IS)		107/89, 109/91			
	Maleic hydrazide		111/83, 111/55, 111/41			
	Maleic hydrazide D2 (IL-IS)		113/85			
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58			

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

Hints on Method 1.8

For general hints on analytes: See 5.6.1

Figure 22: Chromatograms of Chlorate at 0.03mg/kg, Perchlorate at 0.01 mg/kg, Cyanuric acid and Maleic hydrazide at 0.05 mg/kg, all in lemon extract

^{**} Depending on matrix; better use M 1.3

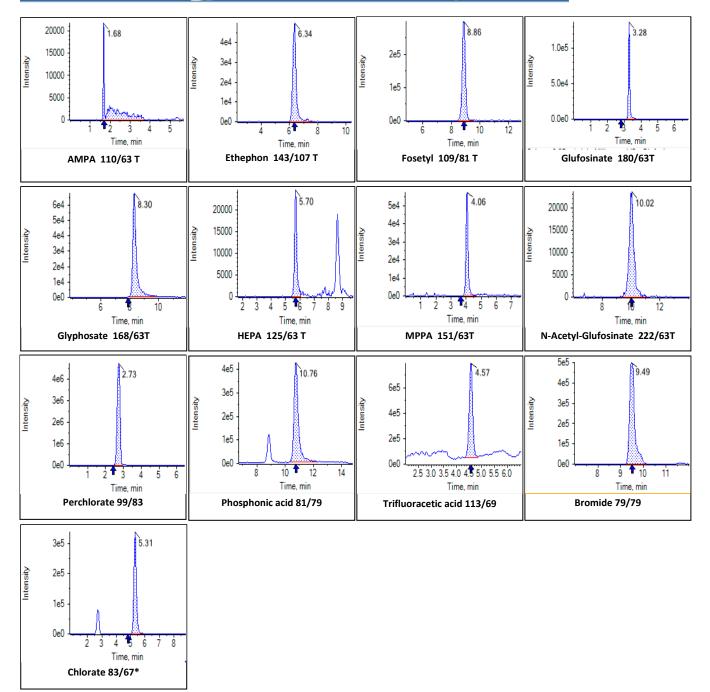

5.6.10.Method 1.9 (M1.9): "Gly&Co. on Raptor Polar X"

Table 26: Proposed LC-MS/MS conditions for Glyphosate, AMPA, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Fosetyl-Al, Bialaphos, Bromide, (Chlorate,) Perchlorate, Phosphonic acid

Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Restek Raptor Polar X LC column, 90Å, 2,7 μm, 2.1 mm x 30 mm; 50 °C				
Pre-column	Restek Raptor Polar X LC column, 90Å, 2,7 μm, 2.1 mm x 5 mm; 50 °C				
Eluent A	0.5% formic acid in water				
Eluent B	0.5% formic acid in acetonitrile				
	%A Flow [mL/		/min]	Time [min]	
	10	0.5		0.5	
Gradient	60	0.5		1.5	
	90	0.5		11.5	
	90	0.5		14	
	10	0.5		14.1	
	10	0.5		17	
Injection volume	10 μL				
	e.g. 0.05 or 0.1 μg/IS portion +		·		
Calibration standards and levels	Standard solutions of Fosetyl a		•		
	Phosphonic acid which may pot	entially lea	•	· · · · · · · · · · · · · · · · · · ·	
	Compound		Mass Transitions (m/z)		
	Glyphosate		168/63, 168/124, 168/150, 168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)		171/63, 171/126		
	AMPA		110/63, 110/79, 110/81		
	AMPA- ¹³ C, ¹⁵ N (IL-IS)		112/63, 112/81		
	Ethephon		143/107, 143/79, 145/1		
	Ethephon-D ₄ (IL-IS)			nal, when interferences)	
	HEPA		125/79, 125/95, 125/63	3	
	HEPA-D ₄ (IL-IS)		129/79, 129/97		
	Glufosinate		180/63, 180/136, 180/85, 180/95		
	Glufosinate-D ₃ (IL-IS)		183/63, 183/98		
	N-Acetyl-Glufosinate		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl]D		225/63, 225/137		
Acquired mass transitions (m/z)	N-Acetyl-Glufosinate-[methyl]	D₃ (IL-IS)	225/63		
	МРРА		151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS)		154/63, 154/136		
	Fosetyl-Al		109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (each detected as Fosetyl- D ₅)		
	Trifluoroacetic acid (TFA)		113/69, 113/113, 69/19		
	Trifluoroacetic acid -13C ₂ (IL-IS)		115/70		
	Bialaphos		322/88, 322/94, 322/134		
	Bromide		81/81, 79/79		
	Chlorate 180 (IL IS)		83/67, 85/69		
	Chlorate-18O ₃ (IL-IS)		89/71, 91/73		
	Perchlorate 180 (ILLIS)		99/83, 101/85		
	Perchlorate- ¹⁸ O ₄ (IL-IS)		107/89, 109/91		
	Phosphonic acid		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67		

- 1. Handling of column, pre-column and pre-filters: See 5.6.1 point 4.a)4.c)
- 2. For general hints on analytes: See 5.6.1

Figure 23: Typical chromatograms in strawberry extracts spiked at 0.1 mg/kg. *for Chlorate matrix dependent retention time shifts were observed

5.6.11.Method 1.10 (M1.10): "Gly&Co. on Obelisc N"

Table 27: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate, Bromide, Chlorate, Perchlorate, (Fosetyl-Al and Phosphonic acid)

Instrument parameters	c, Perchlorate, (Fosetyl-Al and Phosphonic acid) Conditions				
Ionisation mode	ESI neg				
Column/temperature	Sielc Obelisc N, 100Å, 5 μm, 2.1 mm x 150 mm (SIELC; ON-21.150.0510), 50°C				
Pre-column	Sielc Obelisc N, 100Å, 5 μm, 2.1 mm x 10 mm (SIELC; ON-21.G.0510), 50°C				
Pre-filters	e.g. Supelco column saver 2.0 µm Filter				
Eluent A	1% formic acid in water				
Eluent B	0.5 % formic acid in Acetonitrile				
		[mL/min] Time [min]			
	10 0.4	0.5			
Gradient	80 0.4	2			
	90 0.4	9			
	10 0.4	9.1			
	10 0.4	13			
Injection volume	10 μL	10			
injection volume	e.g. 0.05 or 0.1 µg/IS portion + one leve	el at the reporting limit:			
Calibration standards and levels		ephon (and their IL-ISs) may be contaminated with native			
Cambration Standards and levels	·	lead to false positives or shifted calibration, see 5.6.1.			
	Compound	Mass Transitions (m/z)			
	Glyphosate	168/63, 168/124, 168/150, 168/81			
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)	171/63, 171/126			
	AMPA	110/63, 110/79, 110/81			
	AMPA- ¹³ C, ¹⁵ N (IL-IS)	110/63, 110/79, 110/81			
	N-Acetyl-Glyphosate	210/63, 210/150, 210/79, 210/148			
	N-Acetyl-Glyphosate-D ₃ (IL-IS)	213/63, 213/153			
	Ethephon	143/107, 143/79, 145/107			
	Ethephon-D ₄ (IL-IS)	147/111, 147/79			
	HEPA	125/79, 125/95, 125/63			
	HEPA-D ₄ (IL-IS)	129/79, 129/97			
	Glufosinate	180/63, 180/136, 180/85, 180/95			
	Glufosinate-D ₃ (IL-IS	183/63, 183/98			
	N-Acetyl-Glufosinate	222/63, 222/59, 222/136			
	N-Acetyl-Glufosinate-[acetyl]D ₃ (IL-IS)	225/63, 225/137			
	N-Acetyl-Glufosinate-[methyl]D ₃ (IL-IS				
	MPPA	151/63, 151/107, 151/133			
Acquired mass transitions (m/z)	MPPA-D ₃ (IL-IS)	154/63, 154/136			
	Fosetyl-Al	109/81, 109/63 (each detected as Fosetyl)			
	Fosetyl-Al-D ₁₅ (IL-IS)	114/82, 114/63 (each detected as Fosetyl- D₅)			
	Trifluoroacetic acid (TFA)	113/69, 113/113, 69/19			
	Trifluoroacetic acid - ¹³ C ₂ (IL-IS)	115/70			
	Maleic Hydrazide	111/82, 111/42, 111/55, 111/83			
	Maleic Hydrazide-D ₂ (IL-IS)	113/42, 113/85			
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)	115/87, 115/58			
	Cyanuric acid	128/42, 128/85			
	Cyanuric acid- ¹³ C ₃	131/43, 131/87			
	Bromide ion	81/81, 79/79 (pseudotransitions, consider notes)			
	Chlorate	83/67, 85/69			
	Chlorate- ¹⁸ O ₃ (IL-IS)	89/71, 91/73			
	Perchlorate	99/83, 101/85			
	Perchlorate- ¹⁸ O ₄ (IL-IS)	107/89, 109/91			
	Phosphonic acid	81/79, 81/63			
	Phosphonic acid-18O₃ (IL-IS)	87/85, 87/67			
		5.,65,67,67			

Hints on Method 1.10

For general hints on analytes: See 5.6.1

5.6.12.Method 1.11 (M1.11): "Gly&Co. on Luna Polar Pesticides"

Table 28: Proposed LC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-Glyphosate, Fosetyl, Ethephon, HEPA, Glufosinate, MPPA, N-Acetyl-Glufosinate

Instrument parameters	Conditions						
Ionisation mode	ESI neg						
Column/temperature	Luna Polar Pesticides, 3 μm, 2.3	Luna Polar Pesticides, 3 μm, 2.1 mm x 100 mm, 40°C					
Due column	Phenomenex SecurityGuard	ULTRA Cartridge	es, For	Luna Pola	r Pesticides	Columns	
Pre-column	(AJ0-8789 3/pk), 40°C						
Eluent A	0.3% formic acid in water						
Eluent B	0.5 % formic acid in Acetonitrile	9					
	%A	Flow [mL/min]		Tir	me [min]		
	5	0.4		0			
Gradient	5	0.4		1			
	65	0.4		5			
	90	0.4		5.:	1		
	90	0.4		11			
	5	0.4		11	1		
	5	0.4		15	i		
Injection volume	5 μL						
	e.g. 0.05 or 0.1 μg/IS portion + one level at the reporting limit;						
Calibration standards and levels	Standard solutions of Fosetyl a	nd Ethephon (and	their IL-IS	s) may be co	ntaminated v	vith native	
	Phosphonic acid which may po	tentially lead to fal	se positive	es or shifted	calibration, se	e 5.6.1.	
	Compound	Mass	Transitio	ns (m/z)			
	Glyphosate	168/0	53, 168/12	24, 168/150,	168/81		
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS)	171/0	171/63, 171/126				
	АМРА	110/0	110/63, 110/79, 110/81				
	AMPA- ¹³ C, ¹⁵ N (IL-IS)	112/0	112/63, 112/81				
	N-Acetyl-Glyphosate	210/0	210/63, 210/150, 210/79, 210/148				
	N-Acetyl-Glyphosate-D ₃ (IL-IS)	213/0	213/63, 213/153				
	Ethephon	143/	143/107, 143/79, 145/107				
	Ethephon-D ₄ (IL-IS)	147/	147/111, 147/79				
Acquired mass transitions (m/z)	НЕРА	125/	125/79, 125/95, 125/63				
Acquired mass transitions (m/2)	HEPA-D₄ (IL-IS)	129/	129/79, 129/97				
	Glufosinate	180/	180/63, 180/136, 180/85, 180/95				
	Glufosinate-D ₃ (IL-IS	183/0	183/63, 183/98				
	N-Acetyl-Glufosinate	222/0	222/63, 222/59, 222/136				
	N-Acetyl-Glufosinate-[acetyl]D	225/6 (IL-IS)	53, 225/13	37			
	N-Acetyl-Glufosinate-[methyl]	D ₃ (IL-IS) 225/6	53				
	МРРА	151/0	53, 151/10	07, 151/133			
	MPPA-D ₃ (IL-IS)	154/0	53, 154/13	36			
	Fosetyl-Al	109/8	109/81, 109/63 (each detected as Fosetyl))	
	Fosetyl-Al-D ₁₅ (IL-IS)				ted as Fosety		

Hints on Method 1.11

For general hints on analytes: See 5.6.1

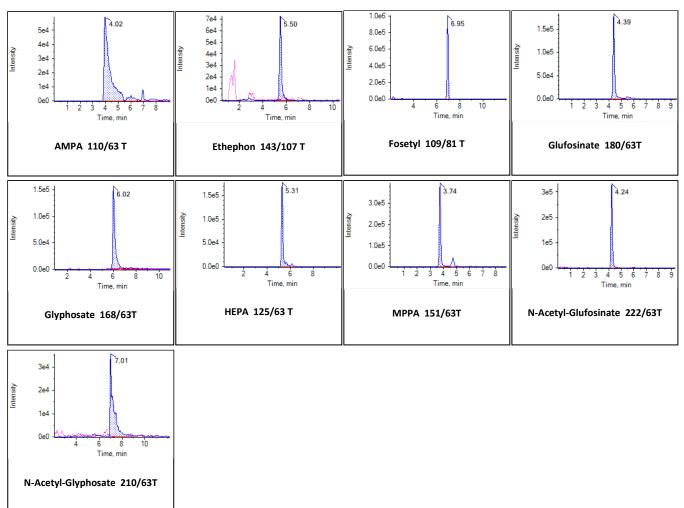


Figure 24: Typical chromatograms in tomato extracts spiked at 0.1 mg/kg.

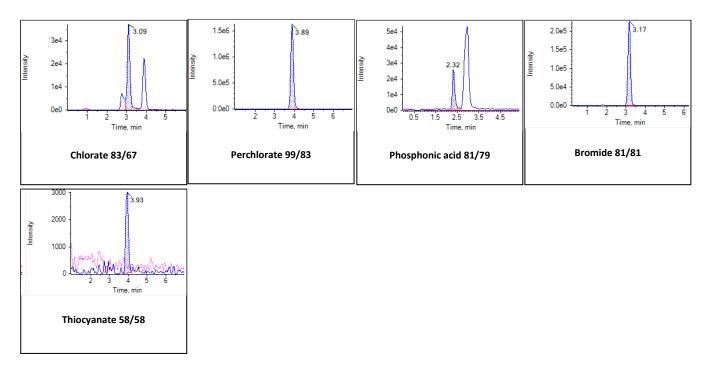

5.6.13.Method 1.12 (M1.12): "PerChloPhos on Luna Polar Pesticides"

Table 29: Proposed LC-MS/MS conditions for Bromide, Chlorate, Perchlorate, Phosphonic acid and Thiocyanate

Instrument parameters Conditions						
Ionisation mode						
	ESI neg					
Column/temperature	Luna Polar Pesticides					
Pre-column	Luna Polar Pesticides, 3 μm, 2.					
Pre-filters	Phenomenex SecurityGuard UI	HPL HILIC 2.:	1 mm x 10 mm, 40°C			
Eluent A	0.3% formic acid in water					
Eluent B	0.5 % formic acid in Acetonitril	e				
	%A	Flow [mL/	/min]	Time [min]		
Gradient	95	0.4		0		
Gradient	95	0.4		1.5		
	50	0.4		9		
	50	0.4		10		
Injection volume	2 μL					
	e.g. 0.05 or 0.1 μg/IS portion +	one level at	the reporting limit;			
Calibration standards and levels	Standard solutions of Fosetyl a	and Ethepho	n (and their IL-ISs) may b	e contaminated with native		
	Phosphonic acid which may po	tentially lea	d to false positives or shif	ted calibration, see 5.6.1.		
	Compound		Mass Transitions (m/z)			
	Bromide:		81/81, 79/79			
	Chlorate		83/67, 85/69			
A south and assess to the first	Chlorate-18O ₃ (IL-IS)	Chlorate-18O ₃ (IL-IS)		89/71, 91/73		
Acquired mass transitions (m/z)	Perchlorate		99/83, 101/85			
	Perchlorate-18O ₄ (IL-IS)		107/89, 109/91			
	Phosphonic acid		81/79, 81/63			
	Phosphonic acid- ¹⁸ O ₃ (IL-IS)		87/85, 87/67			
	Thiocyanate		58/58			
	Thiocyanate ¹³ C ¹⁵ N		60/60			
	•					

Hints on Method 1.11

For general hints on analytes: See 5.6.1

Figure 25: Typical chromatograms of Chlorate, Perchlorate, Phosphonic Acid, Bromide and Thiocyanate in tomato extracts spiked at 0.1 mg/kg.

5.6.14. Method 2 (M2): "Fosetyl and Maleic Hydrazide"

Table 30: Proposed LC-MS/MS conditions for Fosetyl-Al, Maleic Hydrazide and Perchlorate

Instrument parameters					
Ionization mode	ESI neg				
Column/temperature	Obelisc R 2.1 x 150 mm 5 μm 100 Å; (SIELC; OR-21.150.0510)				
Pre-filters	e.g. Supelco column saver 2.0 μn	n Filter			
Pre-column	Obelisc R 2.1 x 10mm 5 μm				
Pre-column	(SIELC; OR-21.G.0510)				
Eluent A	50 mmol NH ₄ -formate in water +	- 0.1 % formic	acid		
Liuent A	use brown glass bottles				
Eluent B	Acetonitrile				
	%A	Flow [mL/n	nin]	Time [min]	
	3	0.3		0	
Gradient	10	0.3		6	
Gradient	70	0.5		15	
	70	0.5		18	
	3	0.5		18.1	
	3	0.5		28	
Injection volume	5 μL				
	e.g. 0.05 or 0.1 μg/IS portion*, +				
Calibration standards and levels	For Maleic Hydrazide (MH) an additional level at 1 or 2 µg/mL may be useful as well, due to high				
	residue levels; consider that MH is typically only relevant for potatoes and crops of the leek				
	family (onions etc.)				
	Compound		Mass Transitions (m/z)		
	Fosetyl-Al		109/81, 109/63 (detected as fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS)		114/82, 114/63 (detected as fosetyl-D ₅)		
Acquired mass transitions	Maleic Hydrazide		111/82, 111/42, 1	111/55, 111/83	
	Maleic Hydrazide-D ₂ (IL-IS)		113/42, 113/85		
	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		115/87, 115/58		
	Perchlorate		99/83, 101/85		
	Perchlorate- ¹⁸ O ₄ (IL-IS)		107/89, 109/91		

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

- 1. Contamination of Maleic hydrazide D₂ with native Maleic hydrazide: See 5.6.1
- 2. For Perchlorate better run Method 1.3 or 1.4!
- 3. For general hints on analytes: See 5.6.1

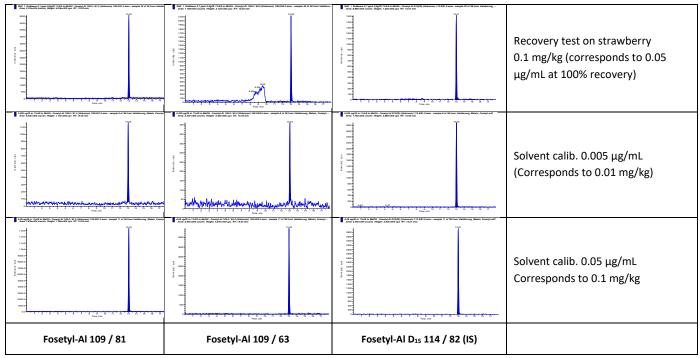


Figure 26: Typical chromatograms of Fosetyl-Al in strawberry extract and in solvent-based standards

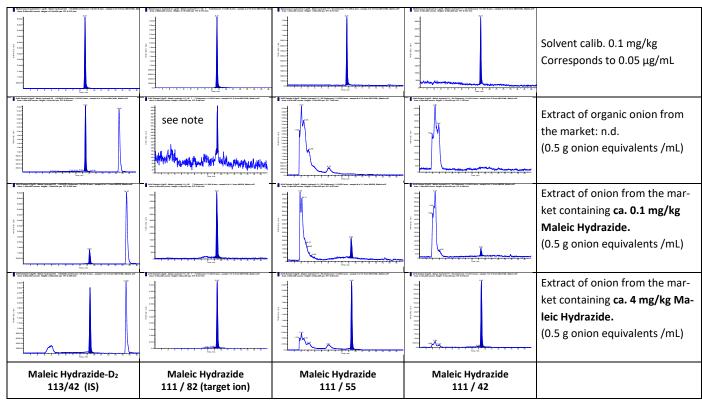
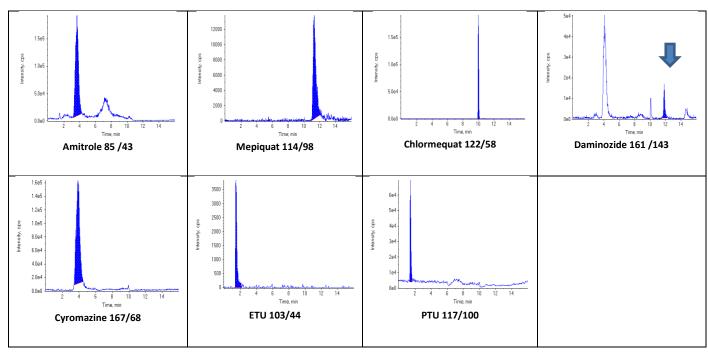


Figure 27: Typical chromatograms of Maleic Hydrazide in onion extracts and in solvent-based standards

5.6.15. Method 3 (M3): "Amitrole&Co."


Table 31: Proposed LC-MS/MS conditions for Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU, Trimesium, Difenzoquat and Cyromazine.

and cyromazme.	0 1:::					
Instrument parameters	Conditions					
Ionisation mode	ESI pos					
Column/temperature	Obelisc R 2.1 x 150 mm 5 μm 100 Å (SIELC; OR-21.150.0510); 40°C					
Pre-column	Obelisc R 2.1 x 10 mm 5 μm	Obelisc R 2.1 x 10 mm 5 μm				
	(SIELC; OR-21.G.0510)					
Pre-filters	e.g. Supelco column saver 2.0 μι	m Filter				
Eluent A	5 mmol NH ₄ -formate in water					
Eliteric A	Use brown glass bottles					
Eluent B	5 mmol NH ₄ -formate acetonitril	e/water 95 :5 (v/	/v)			
	%A	Flow [mL/min]	Time [min]		
	2	0.4		0		
Gradient	2	0.4		2.5		
Gradient	80	0.4		5		
	80	0.4		11		
	2	0.4		11.1		
	2	0.4		18		
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion* +	one level at the	reporting limit			
	Compound		Mass Transitions (m/z)			
	Amitrole		85/43, 85/57, 85/58			
	Amitrole-15N (IL-IS)		86/43			
	Amitrole-15N ₂ ,13C ₂ (IL-IS)		89/44			
	Chlormequat		122/58, 122/63, 124/58			
	Chlormequat-D ₄ (IL-IS)		126/58			
	Mepiquat		114/98, 114/58			
	Mepiquat-D₃ (IL-IS)		117/101			
	Daminozide		161/143, 161/61, 161/101 , 161/115, 161/44			
	Daminozide-13C ₄ (IL-IS)		165/147, 165/44			
Acquired mass transitions	Daminozide-D ₆ (IL-IS)		167/149, 165/97			
	Cyromazine		167/68, 167/125, 167/85, 167/108,			
	Cyromazine-D ₄ (IL-IS)		171/86, 171/68			
	ETU (Ethylenethiourea)		103/44, 103/60, 103/86			
	ETU-D ₄ (IL-IS)		107/48			
	PTU - N,N'-(1,2-Propylene)thiou	PTU - N,N'-(1,2-Propylene)thiourea)**:		117/100, 117/58, 117/60, 117/72		
	PTU-D6 - N,N'-(1,2-Propylene)thiourea -D6**:		123/64, 126/74			
	PTU-D6 - N,N'-(1,3-Propylene)thiourea -D6)**		(123/64)			
	Trimethylsulfonium	Trimethylsulfonium		77/62, 77/47		
	Trimethylsulfonium-D ₉ (IL-IS)		86/68, 86/50			
	Difenzoquat		249/77, 249/130, 249/193			
	No IL-IS currently available		-			

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

- 1. For Paraquat, Diquat, Trimethylsulfonium and N,N-Dimethylhydrazine better run Method 4 (5.6.16)
- 2. For general hints on analytes: See 5.6.1

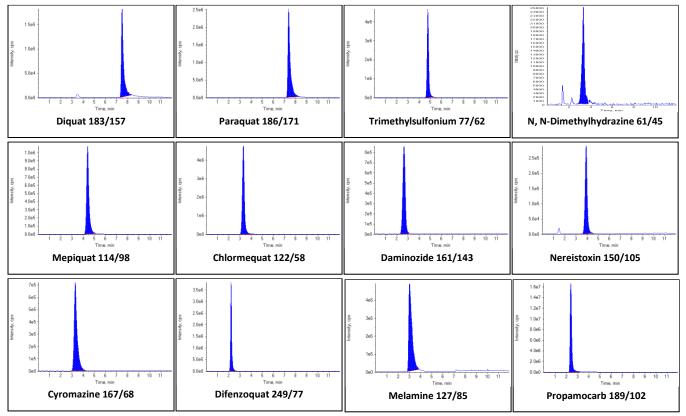
^{**} The acronym PTU, commonly used for the propineb degradant 4-Methyl-2-imidazolidinethione = N,N'-(1,2-Propylene)thiourea = N,N'-iso-propylenethiourea (CAS No. 2055-46-1). The same accronym is, however, also used for N,N'-propylenethiourea = N,N'-(1,3-Propylene)thiourea = N,N'-iso-propylenethiourea = N,N'-iso-propylenethioure

Figure 28: Typical chromatograms of Amitrole, Chlormequat, Mepiquat, Daminozide, ETU, PTU and Cyromazine in apple extract at 0.01 mg/kg

5.6.16.Method 4.1 (M4.1): "Quats&Co. Obelisc R"

Table 32: Proposed LC-MS/MS conditions Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide N,N-Dimethylhydrazine, Cyromazine, Trimethylsulfonium, Nereistoxin, Difenzoquat, Melamine and Propamocarb.

Instrument parameters	Conditions					
Ionisation mode	ESI pos					
Column/temperature	Obelisc R 2.1 x 150 mm 5 μm 100 Å (SIELC; OR-21.150.0510); 40°C					
Pre-filters	e.g. Supelco column saver 2.0 μm Filter					
Pre-column	Obelisc R 2.1 x 10 mm 5 μm (SIELC; OR-21.G.0510)					
Eluent A	20 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid), for this mix 1.8 mL formic acid (3.4) with 500 mL 20 mmol NH ₄ -formate in water Use brown glass bottles! Alternative eluent A: 50 mmol NH ₄ formate in water (adjust to pH 3 with formic acid). This eluent components is also used in M 4.2 "Quats & Co BEH Amide"					
Eluent B	Acetonitrile					
Gradient	%A 20 80 80	Flow [mL/min] 0.4 0.4 0.4		Time [min] 0 4 12		
	20	0.4		12.1		
	20	0.4		20		
Injection volume	10 μL					
Calibration standards and levels	e.g. 0.05 or $0.1\mu\text{g/IS}$ portion* + one level at the reporting limit					
canbration standards and levels	(use plastic vials if Paraquat and Diquat are within your scope!)					
Acquired mass transitions	Diquat Diquat-D ₄ (IL-IS) Diquat-D ₈ (IL-IS) Paraquat Paraquat-D ₈ (IL-IS) Chlormequat Chlormequat-D ₄ (IL-IS) Mepiquat Mepiquat-D ₃ (IL-IS) Daminozide Daminozide-D ₆ (IL-IS) N,N-Dimethylhydrazine N,N-Dimethylhydrazine-D ₆ (IL-IS)		96/88, 191/165 186/171, 93/171, 93/77 194/179, 97/179 122/58, 122/63, 124/58 126/58 114/98, 114/58 117/101 161/143, 161/61, 161/1 165/147 167/149 61/44, 61/45 67/49	ved problems with stability) 7, 171/77, 171/155 8 101 , 161/115, 161/44		
	Cyromazine Cyromazine-D ₄ (IL-IS) Trimethylsulfonium Trimethylsulfonium-D ₉ (IL-IS) Nereistoxin Nereistoxin-D ₆ (IL-IS) Difenzoquat No IL-IS currently available Melamine Melamine-15N ₃ (IL-IS) Propamocarb Propamocarb-D ₇ (IL-IS)		167/68, 167/125, 167/8 171/86 77/62, 77/47 86/68 150/105, 150/61, 150/7 156/105 249/77, 249/130, 249/1 - 127/85, 127/68, (127/6 130/87 189/144, 189/102, 189/ 196/103	71 193 0)		


^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 1).

- 1. **For Morpholin, DEA and TEA better run Method 7 (5.6.20).** In the hot ESI-ion source, DEA seems to convert to Morpholine through condensation (water loss). Chromatographic separation is therefore paramount. With Method 4.1 **(5.6.16)** these two peaks do not sufficiently separate.
- 2. Diquat and Paraquat require special extraction conditions (see 5.2.3-B)

3. Variations in the performance of this column have been observed from batch to batch.

4. For general hints on analytes: See 5.6.1

Figure 29: Typical chromatograms of Diquat, Paraquat, Chlormequat, Mepiquat, Daminozide, N,N-Dimethylhydrazine, Trimethylsulfonium, Cyromazine, Nereistoxin, Difenzoquat, Melamine and Propamocarb in apple extract at 0.1 mg/kg.

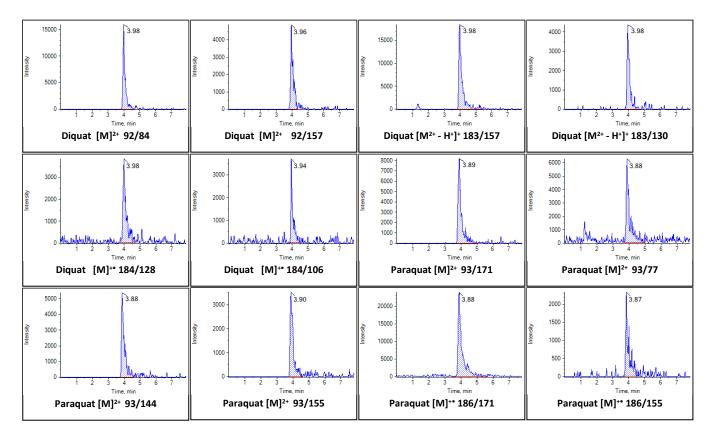


Figure 30: Typical chromatograms of Diquat and Paraquat in rice 0.005 μg/mL final extract (corresponding to 0,04 mg/kg)

5.6.17. Method 4.2 (M4.2): "Quats&Co. BEH Amide"

Table 33: Proposed LC-MS/MS conditions for ESI-pos. compounds listed in the table below.

Instrument parameters	Conditions					
onisation mode	ESI pos.					
olumn/temperature	BEH Amide 2.1 x 100mm 1.7 μm (P/N: 186004801); 40°C					
e-column / Pre-filters	BEH Amide 1.7 μm (P/N: 186004799) / e.g. Supelco column saver 2.0 μm Filter					
uent A	50 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid) Use brown glass!					
uent B	Acetonitrile		, , , , , , , , , , , , , , , , , , , ,			
		w [mL/min]	Time [min]			
	3 0.		0			
	3 0.1		0.5			
radient	30 0	i	4.0			
	60 0		5.0			
	60 0.		6.0			
	3 0.5		6.1			
	3 0		10			
jection volume	2 μL (0.5 μL for Waters Xevo TQ-					
libration standards and levels	e.g. one level at the reporting lim	it plus 0.05 or 0.1	L μg/IS portion* +			
	Compound	Mass	s Transitions (m/z)			
	Aminocyclopyrachlor		170, 214/168, 214/101, 214/68			
	Amitrole		3, 85/57, 85/58			
	Amitrole- ¹⁵ N (IL-IS)	86/43				
	Amitrole- ¹⁵ N ₂ ¹³ C ₂ (IL-IS)	89/44				
	Chlormoguet D. (II. IS)		58, 124/58, 122/63, 122/59, 124/59			
	Chlormequat-D ₄ (IL-IS) Chloridazon-desphenyl		58; 126/59 L17, 146/101, 146/66, 148/119			
	Chloridazon-desphenyl-15N ₂ (IL-IS)					
	Cyromazine		148/117, 148/102 167/68, 167/125, 167/108, 167/85, 167/60			
	Cyromazine-D ₄ (IL-IS)		167/68, 167/125, 167/108, 167/85, 167/60 171/86, 171/68			
	Daminozide		161/143, 161/61, 161/101, 161/115, 161/44			
	Daminozide-13C4 (IL-IS)		165/147, 165/44			
	Daminozide-D ₆ (IL-IS)		167/149, 165/97			
	Diethanolamine (DEA)		106/88, 106/70, 106/45			
	Diethanolamine-D ₄ (IL-IS)		110/92			
	Difenzoquat		130, 249/77, 249/193,			
	Diquat:***		1, 92/157, 183/157			
	Diquat D ₈ (IL-IS)		9, 191/165			
	ETU (Ethylenethiourea)		50, 103/44, 103/86			
	ETU-D ₄ (IS)		18 35, 127/68, (127/60)			
	Melamine		130/87, 130/44			
	Melamine- ¹⁵ N₃ (IL-IS) Maleic Hydrazide		113/67, 113/40			
	Maleic Hydrazide D2		115/69, 115/87			
cquired mass transitions	Maleic Hydrazide- ¹³ C ₄ (IL-IS)		37, 115/58			
	Matrine		249/148, 249/150, 249/110, 249/55			
	Matrine D₃		252/148, 252/150, 252/96			
	Mepiquat		114/98, 114/58			
	Mepiquat-D₃ (IL-IS)		117/101			
	Mepiquat-4-hydroxy		130/58, 130/96, 130/114			
	Morpholine		88/70, 88/45, 88/44			
	Morpholine-D ₈ (IL-IS)		96/78, 96/46 150/105, 150/61, 150/71, 150/72			
	Nereistoxin: Nereistoxin-D ₆ (IL-IS):		150/105, 150/61, 150/71, 150/72 156/105, 156/61			
	- , ,		156/105, 156/61 163/130, 163/132, 163/84, 163/106			
	Nicotine Nicotine D ₄		163/130, 163/132, 163/84, 163/106 167/84			
	Oxymatrine		265/247, 265/205, 265/148, 265/136			
	Oxymatrine D ₃	•	268/250, 268/208			
	Paraquat***		93/171, 93/85, 185/170			
	Paraquat D ₈ (IL-IS)		97/179, 193/178			
	Propamocarb:		189/144, 189/74, 189/102			
	Propamocarb-D ₇ (IL-IS)		196/103, 196/75			
	Propamocarb-N-desmethyl		175/102, 175/144, 175/74, 175/116			
	Propamocarb-N-oxide:		205/102, 205/144, 205/74			
	PTU - N,N'-(1,2-Propylene)thiourea)*		117/100, 117/58, 117/60, 117/72, 117/41			
	PTU-D ₆ - N,N'-(1,2-Propylene)thioure		123/64, 123/74			
	Triethanolamine (TEA)		150/132, 150/70, 150/88			
	Triethanolamine-D ₁₂ (IL-IS)		162/144			
	Trimethylsulfonium		2,77/47			
	Trimethylsulfonium-D ₉ (IL-IS)	86/68	86/68, 86/50			

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

^{**}See comments on PTU under M3 (5.6.15).

^{***} Diquat and paraquat were only measured on the Waters Xevo TQ-S μ

- As the signals of Morpholin, DEA and TEA better run Method 7 (5.6.20): are often strongly suppressed by matrix
 using these LC-conditions. For DEA even false negative results are observed in some cases. This effect is reduced if
 the extract is diluted e.g. 5/10 fold.
- 2. Diquat and Paraquat require special extraction conditions (see 5.2.3-B). The screening option for Diquat was removed as the Diquat peak is very broad. Deprotonated Diquat (which is formed, e.g. in methanolic standards) gives an earlier eluting sharp peak, but this peak does not appear in fresh extracts of real samples and is thus unsuited for screening
- 3. For general hints on analytes: See 5.6.1

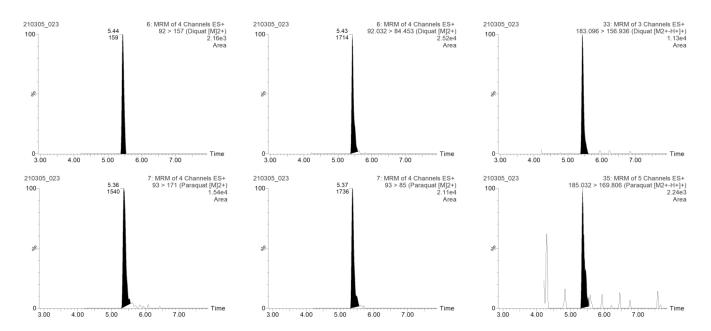
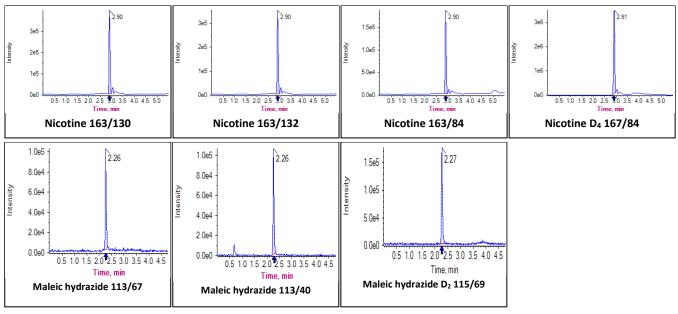
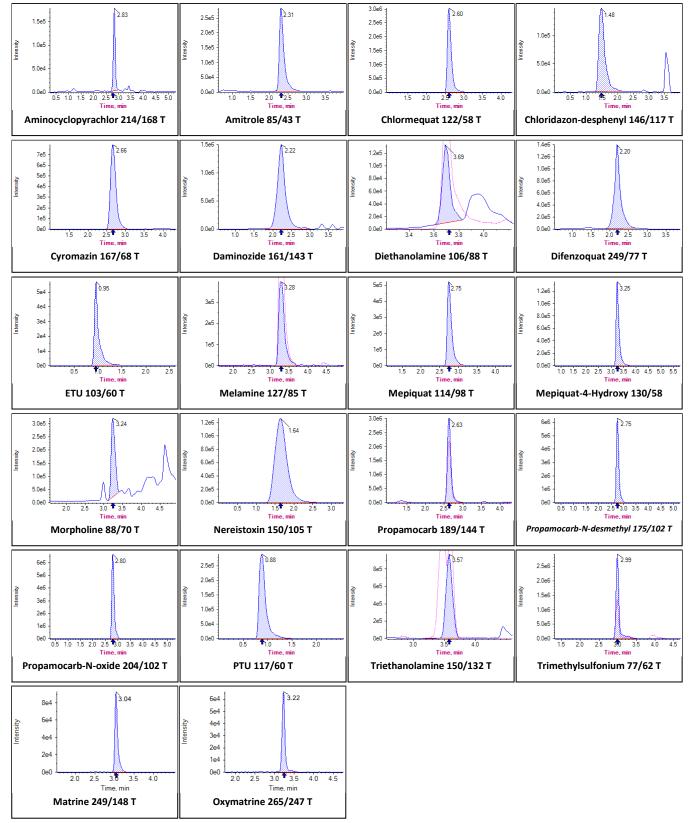




Figure 31: Typical chromatograms of Diquat and Paraquat in sesame extracts spiked at 0.05 mg/kg using Waters Xevo TQ-Sµ.

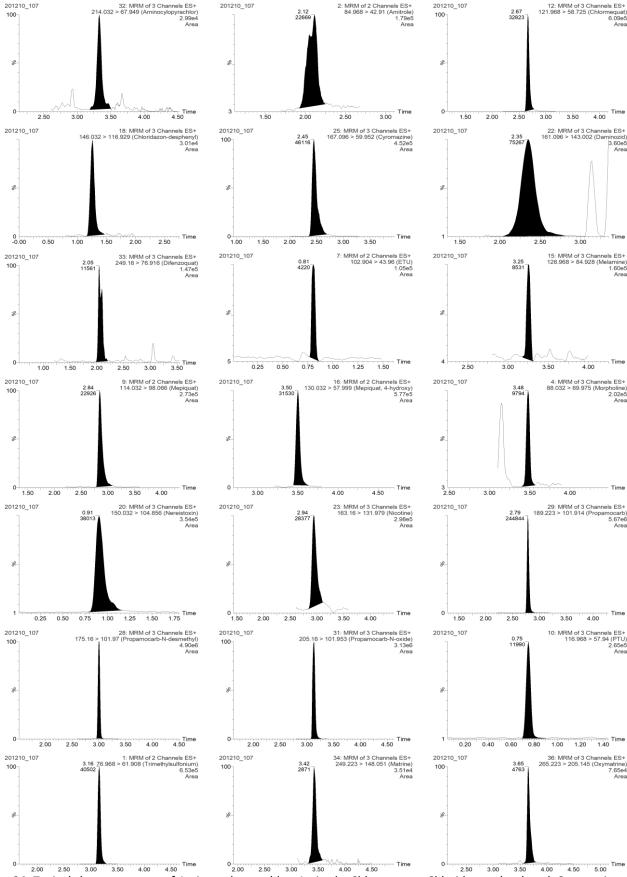


Figure 32: Exemplary chromatograms of Nicotine in flour (spelt, whole-grain) Maleic Hydrazide in solvent. Nicotine at 0.01 mg/kg (0.005 μ g/mL); Nicotine D₄ at 0.1 mg/kg (0.05 μ g/mL); Maleic hydrazide and Maleic Hydrazide D₂ at 0.2 mg/kg (0.1 μ g/mL).

Figure 33: Typical chromatograms of Aminocyclopyrachlor, Amitrole, Chlormequat, Chloridazon-desphenyl, Cyromazine, Daminozide, Diethanolamine, Difenzoquat, ETU, Melamine, Mepiquat, Mepiquat-4-hydroxy, Morpholine, Nereistoxin, Propamocarb, Propamocarb-N-desmethyl, Propamocarb-N-oxide, PTU, Triethanolamine, Trimesium (Trimethylsulfonium) in tomato extracts spiked at 0.05 mg/kg; additionally Matrine and Oxymatrine at 0.01mg/kg in grape extract.

Figure 34: Typical chromatograms of Aminocyclopyrachlor, Amitrole, Chlormequat, Chloridazon-desphenyl, Cyromazine, Daminozide, Diethanolamine, Difenzoquat, ETU, Melamine, Mepiquat, Mepiquat-4-hydroxy, Morpholine, Nereistoxin, Propamocarb, Propamocarb-N-desmethyl, Propamocarb-N-oxide, PTU, Triethanolamine, Trimesium (Trimethylsulfonium) in tomato extracts spiked at 0.06 mg/kg.

5.6.18. Method 5 (M5): "Quats&Co. MonoChrom MS"

Table 34: Proposed alternative LC-MS/MS conditions for Chlormequat and Mepiquat

Instrument parameters	Conditions					
Ionisation mode	ESI pos					
Column/temperature	MonoChrom MS 100x2 mm; 5 μm (Varian); at 40°C					
Eluent A	5 mmol/L NH ₄ -acetate + 0.1% acetic acid in water					
Eluent B	Acetonitrile					
	%A	Flow [mL/min]		Time [min]		
	5	0.4		0		
Gradient	95	0.4		2		
Gradient	95	0.4		5		
	5	0.4		5.1		
	5 0.4			15		
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or $0.1\mu\text{g/IS}$ portion*+ one level at the reporting limit					
	Compound		Mass Tra	nnsitions (m/z)		
	Chlormequat		122/58, 122/63, 124/58			
	Chlormequat-D ₄ (IL-IS)		126/58			
	Mepiquat		114/98, 114/58			
	Mepiquat-D₃ (IL-IS)		117/101			
Acquired mass transitions	Difenzoquat:		249/77, 249/130, 249/193			
	No IS currently available		-			
	ETU (Ethylenethiourea)		103/44, 103/60, 103/86			
	ETU-D ₄ (IL-IS)		107/48			
	PTU - N,N'-(1,2-Propylene)thiou	rea)**	117/100, 117/58, 117/60, 117/72			
	PTU-D6 - N,N'-(1,2-Propylene)th	niourea –D6**	123/64, 123/74			

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also **Table 2**).

- 1. For general hints on analytes: See 5.6.1
- 2. For **more information on method 5** please refer to the following document within the EURL homepage: http://www.crl-pesticides.eu/library/docs/srm/meth ChlormequatMepiquat CrlSrm.pdf

^{**} See comments on PTU under M 3 (5.6.15).

5.6.19. Method 6 (M6): "Streptomycin and Kasugamycin"

Table 35: Proposed LC-MS/MS conditions Streptomycin and Kasugamycin

Instrument parameters	Conditions				
Ionisation mode	ESI pos				
Column	Obelisc R 2.1 x 150 mm 5μm 100 Å				
Column	(SIELC; OR-21.150.0510); 40°C				
Pre-filters	e.g. Supelco column saver 2.0	μm Filt	er		
Pre-column	Obelisc R 2.1 x 10 mm 5 μm				
Fre-column	(SIELC; OR-21.G.0510)				
Eluent A	0.1% formic acid in water				
Eluent B	0.1% formic acid in acetonitrile				
	%A	Flow [mL/min]	Time [min]	
	20	0.3		0	
Gradient	20	0.3		8	
	20	0.3		13	
	80	0.5		18	
	80	0.5		23	
Injection volume	20 μL; dwell time increased to 200 ms				
Calibration standards and levels	e.g. 0.05 or 0.1 μ g/IS portion* one level at the reporting limit				
Cambration standards and levels	(use plastic vials if Streptomycin is within your scope)				
	Compound	ompound		Mass Transitions (m/z)	
	Streptomycin		582/263, 582/246, 582/ 221		
Acquired mass transitions	No IS currently available		-		
	Dihydrostreptomycin		584/263, 584/246		
	Kasugamycin		380/112, 380/200		
	No IS currently available -				

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

- 1. For general hints on analytes: See 5.6.1
- 2. **Dihydrostreptomycin is a veterinary drug itself.** It may be used as IS for the quantification of strepromycin if shown to be absent from the sample (and vice versa)

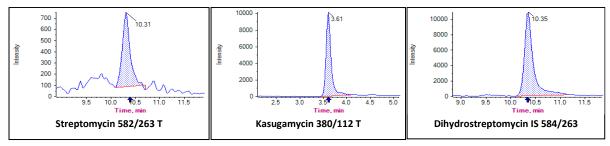


Figure 35: Typical chromatograms of Streptomycin and Kasugamycin in apple extracts spiked at 0.01 mg/kg.

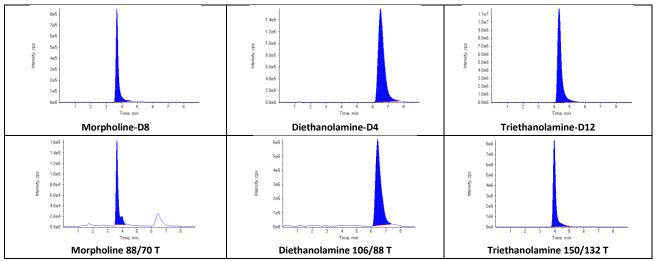

5.6.20. Method 7 (M7): "Morpholine, Diethanolamine and Triethanolamine"

Table 36: Proposed LC-MS/MS conditions Morpholine, Diethanolamine and Triethanolamine

Instrument parameters	Conditions					
Ionisation mode	ESI pos					
Column	Dionex Acclaim Trinity P1 2.1 x 100 mm (3 μm) (P/N 071389); 40°C					
Pre-filters	e.g. Supelco column saver 2.0 µm Filter					
Pre-column	Dionex Acclaim Trinity P1 2.	1 x 10 m	nm (3 μm) (P/N 071391	.)		
Eluent A	50 mmol NH ₄ -formate in water (adjust to pH 3 with formic acid) Use brown glass bottles!					
Eluent B	Acetonitrile					
Gradient	%A	Flow [mL/min]		Time [min]		
Gradient	10	0.4		0		
	10	0.4		10		
Injection volume	5 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 µg/IS portion+ one level at the reporting limit					
	Compound			Mass Transitions (m/z)		
	Morpholine		88/70, 88/45, 88/44			
Acquired mass transitions	Morpholine-D ₈ (IS)		96/78, 96/46			
Acquired mass transitions	Diethanolamine (DEA)		106/88, 106/70, 106/45			
	Diethanolamine-D ₄ (IS)		110/92			
	Triethanolamine (TEA)		150/132, 150/70, 150/88			
	Triethanolamine-D ₁₂ (IS) 162/144					

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

- 1. For general hints on analytes: See 5.6.1
- 2. **Morpholin, DEA and TEA are not pesticides**, they are additive of waxes used to coat crops (citrus, apples and mangoes etc). They are included in this method for the sake of convenience and synergy. As these three compounds can be analyzed very sensitively 5-10-fold dilution of the extracts before injection is recommendable where possible, especially in absence of an IS requiring standard additions approach (5.5.3)

Figure 36: Typical chromatograms of Morpholine, Diethanolamine and Triethanolamine in apple extracts at 0.05 mg/kg (extract were diluted 10-fold before injection)

5.6.21. Method 8 (M8): "Triazole derivative metabolites (TDMs)"

Table 37: Proposed LC-MS/MS conditions 1,2,4-Triazole, Triazole-alanine, Triazole-acetic acid, Triazole-lactic acid and 1,2,3- Triazole

Instrument parameters	Conditions						
Ionisation mode	ESI pos						
Column	Hypercarb 2.1 x 100 mm 5 μm (P/N 35005-102130); 40°C						
Pre-column	Hypercarb Guard 2.1 x 10 mm 5 μm (P/N 35005-102101)						
Pre-filter	e.g. Supelco column saver 2.0 µm Filter (optional)						
Eluent A	1% acetic acid in water + 5% methanol						
Eluent B	1% acetic acid in methanol						
	%A	Flov	/ [mL/min]	Time [min]			
	100	0.6		0			
Gradient	10	0.6		5			
	10	0.6		6			
	100	0.6		6.1			
	100	0.6		10			
Injection volume	2 μL						
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion* one level at the reporting limit						
	Compound			DMS-Settings			
			Mass Transitions (m/z)	(Selexion Q-Trap® 5500) **			
				COV (V)	SV (V)		
	1,2,4-Triazole ^{#:}		70/43, 70/70	-10	2600		
Acquired mass transitions	1,2,4-Triazole- ¹³ C ₂ , ¹⁵ N ₃ (IS)		75/46	-13.75	3000		
Acquired mass transitions	Triazole-alanine:		157/70, 157/88, 157/42	-2.0	3000		
	Triazole-alanine- ¹³ C ₂ , ¹⁵ N ₃ (IS)		162/75	-1.75	3100		
	Triazole-acetic acid:		128/70, 128/43, 128/73	-6.0	3100		
	Triazole-acetic acid-13C ₂ ,15N ₃ (IS)		133/75	-6.0	3500		
	Triazole-lactic acid:		158/70, 158/43, 158/112	-3.0	3300		
	Triazole-lactic acid-13C ₂ ,15N ₃ (IS)		163/75	-2.25	3500		

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

- 1. For general hints on analytes: See 5.6.1
- 2. 1,2,4-Triazole is used as nitrification inhibitors in fertilizers
- 3. The following commercially available isotopically labelled components were not tested with this method: 1,2,4-Triazole-D₂, 1, 2, 4-Triazole-acetic acid-D₂, 1, 2, 4-Triazole-alanine-D₂, 1, 2, 4-Triazole-lactic acid-D₂

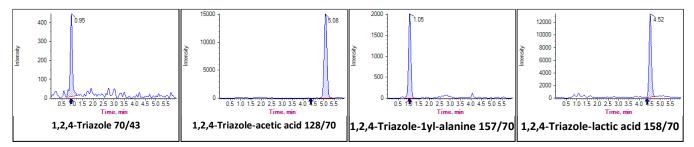


Figure 37: Typical chromatograms of TDMs in avocado extracts spiked at 0.01 mg/kg.

^{**} Further parameters: DMS temp.: low; CUR 20, GS1 60, GS2 70, DMO -3.0; DMS condition differ to some extent from instrument to instrument DMS condition differ to some extent from instrument to instrument

5.6.22. Method 9 (M9): "Difluoroacetic acid and Trifluoroacetic acid"

Table 38: Proposed LC-MS/MS and Selexion conditions Difluoroacetic and Trifluoroacetic acid

Instrument parameters	Conditions					
Ionisation mode	ESI neg					
Column	Dionex/Thermo, Acclaim Trinity	P1 , 2.3	1 x 100 mm, (3 μm) (P/N 071	.389); 40°C		
Pre-column	Thermo Guard Cartrige Acclaim 1	Trinity	P1, 2.1 x 10 mm, (3 μm) (P/N	l 071391)		
Pre-filter	e.g. Supelco column saver 2.0 μm	n Filter	(optional)			
Eluent A	50 mmol NH4-formate, adjusted	to pH	3 with formic acid			
Eluent B	Acetonitrile	Acetonitrile				
	%A	Flow	/ [mL/min]	Time [min]		
	10	0.45		0		
Cuadiant	10	0.45		3.5		
Gradient	50	0.45		4		
	50	0.45		6		
	10	0.45		6.1		
	10	0.45		10		
Injection volume	2 μL					
Calibration standards and levels	e.g. 0.05 or 0.1 μg/IS portion*, o	ne leve	el at the reporting limit. Alw	ays use matrix ba	sed calibrations	
Calibration Standards and levels	(e.g. blank tomato extract) instea	ad of so	olvent based.			
				DMS-S	ettings	
	Compound		Mass Transitions (m/z)	(Selexion Q-Tr	ap® 5500) ***	
Acquired mass transitions				COV (V) SV (V)		
Acquired mass transitions	Difluoroacetic acid (DFA)		95/51, 95/95**	-9.5	2500	
	Difluoroacetic acid -13C ₂ (IL-IS)		75/46	-12	3000	
	Trifluoroacetic acid (TFA)		113/69, 113/113**	-5.6	2200	
	Trifluoroacetic acid -13C2 (IL-IS)		115/70	-5.5	2300	

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

Hints on Method 9

1. For general hints on analytes: See 5.6.1

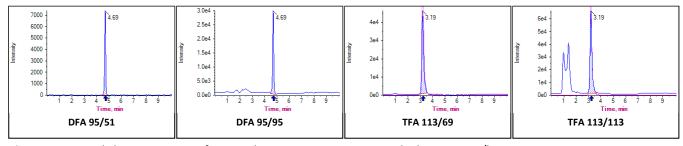


Figure 38: Typical chromatograms of DFA and TFA in tomato extracts spiked at 0.05 mg/kg

^{**} Despite not having a mass transition the DMS provides good selectivity

^{***} Further parameters: DMS temp.: medium; CUR 20, GS1 60, GS2 70, DMO -3.0; DMS condition differ to some extent from instrument to instrument

5.6.23. Method 10 (M10): "Triazole derivative metabolites (TDMs) on Torus DEA"

Table 39: Proposed LC-MS/MS conditions 1,2,4-Triazole, Triazole-alanine, Triazole-acetic acid, Triazole-lactic acid and 1,2,3- Triazole

Ionisation mode ESI pos Column Waters Torus™DEA 2.1 mm x 100 mm; 1.7 μm; 50 °C Pre-column Waters Torus™DEA VanGuard™ 2.1 mm x 5 mm; 1.7 μm Pre-filter Waters ACQUITY UPLC Column In-Line Filter Kit [205000343] Eluent A 1.2% formic acid in water Eluent B 0.5 % formic acid in Acetonitrile %A Flow [mL/min] Time [min] 10 0.5 0.5 Gradient 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5.5 10 0.5 5.5 10 0.5 5.5 10 0.5 5.5	
Pre-column Waters Torus™DEA VanGuard™ 2.1 mm x 5 mm; 1.7 μm Pre-filter Waters ACQUITY UPLC Column In-Line Filter Kit [205000343] Eluent A 1.2% formic acid in water Eluent B 0.5 % formic acid in Acetonitrile %A Flow [mL/min] Time [min] 10 0.5 0.5 Gradient 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5 10 0.5 5	
Pre-filter Waters ACQUITY UPLC Column In-Line Filter Kit [205000343] Eluent A 1.2% formic acid in water Eluent B %A Flow [mL/min] Time [min] 10 0.5 0.5 0.5 Gradient 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5.5	
Eluent A 1.2% formic acid in water Eluent B 0.5 % formic acid in Acetonitrile %A Flow [mL/min] Time [min] 10 0.5 0.5 10 0.5 0.5 6radient 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5.5	
Column C	
%A Flow [mL/min] Time [min] 10 0.5 0 10 0.5 0.5 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5.5	
10	
Gradient 10 0.5 0.5 0.5 1.5 90 0.5 4.5 90 0.5 5.5	
Gradient 80 0.5 1.5 90 0.5 4.5 90 0.5 5 10 0.5 5.5	
90 0.5 4.5 90 0.5 5 10 0.5 5.5	
90 0.5 5 10 0.5 5.5	
10 0.5 5.5	
10 0.5	
0.5	
Injection volume 2μ L	
Calibration standards and levels e.g. 0.05 or 0.1 μg/IS portion* one level at the reporting limit	
Compound Mass Transitions (m/z)	
Triazole-alanine: 157/88, 157/70, 157/42	
Triazole-alanine- ¹³ C ₂ , ¹⁵ N ₃ (IS): 162/75	
Acquired mass transitions Triazole-alanine D ₂ : 159/42	
Triazole-acetic acid: 128/70, 128/43, 128/73	
Triazole-acetic acid- ¹³ C ₂ , ¹⁵ N ₃ (IS): 133/75	
Triazole-acetic acid D ₂ : 130/72	
Triazole-lactic acid: 158/70, 158/43, 158/112	
Triazole-lactic acid-13C ₂ ,15N ₃ (IS): 163/75	
Triazole-lactic acid D ₂ : 160/72	

^{*} One IS portion is the absolute IS-mass contained in the prepared calibration standard solution (see also Table 2).

Hints on Method 10

- 1. For general hints on analytes: See 5.6.1
- 2. **1,2,4-Triazole is measured by M8:** See 5.6.21

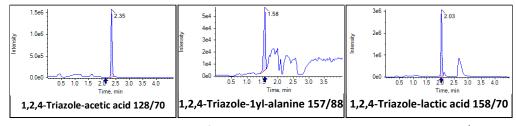


Figure 39: Typical chromatograms of TDMs in strawberry extracts spiked at 0.05 mg/kg.

5.6.24. Method 11 (M11): "Gly&Co. by IC on AS19"3

Table 40: Proposed IC-MS/MS conditions for Glyphosate, AMPA, N-Acetyl-Glyphosate, Ethephon, HEPA, Glufosinate, MPPA, Fosetyl-Al, Cyanuric acid, Bromide, Chlorate, Perchlorate, Phosphonic acid and TFA

iosetyl-Al, Cyanuric acid, Bromide, Chlor Instrument parameters	Conditions				
Ionisation mode	ESI neg				
Column/temperature	Thermo Scientific™ Dionex™ Ion	Pac™ AS1	19,2x250mm; 32°C		
Pre-column	Thermo Scientific™ Dionex™ Ion	Pac TM AG	19,2x50mm		
Eluent	Thermo Scientific™ Dionex™ EGO	500™ K	OH eluent generator car	tridge	
	c [KOH] Flow [mL/r		min]	Time [min]	
	15	0.3		0	
	15	.3		8	
	36	.3		13	
Gradient	36	.3		21	
	70	.3		21.5	
	70	.3		25	
	15	.3		25.5	
	15 (.3		30	
Injection volume	5 μL of 5-fold diluted extracts in v	ater (pre	ferably ultrapure)		
Flow Make-up Solvent before ion source	0.15 mL/min acetonitrile		, , , ,		
	e.g. 0.05 or 0.1 μg/IS portion + on	e level at	the reporting limit;		
Calibration standards and levels	Standard solutions of Fosetyl and			be contaminated with nativ	
	Phosphonic acid which may poter				
	Compound	,	Mass Transitions (m/z		
	Glyphosate:	ate: 168/63, 168/1		•	
	Glyphosate- ¹³ C ₂ , ¹⁵ N (IL-IS):		171/63, 171/126	,, -	
	AMPA:		110/63, 110/79, 110/8	R1	
	AMPA- ¹³ C, ¹⁵ N (IL-IS):		112/63, 112/81	, <u>-</u>	
	N-Acetyl-Glyphosate:		210/63, 210/150, 210/	/79 210/148	
	N-Acetyl-Glyphosate-D ₃ (IL-IS):		213/63, 213/153	73, 210, 110	
	Ethephon:		143/107, 143/79, 145/	/107	
	Ethephon-D ₄ (IL-IS):		147/111, 147/79	107	
			125/79, 125/95, 125/6	33	
	HEPA-D ₄ (IL-IS):		129/79, 129/97		
	Glufosinate:		180/63, 180/136, 180/85, 180/95		
	Glufosinate-D ₃ (IL-IS):		183/63, 183/98		
	N-Acetyl-Glufosinate:		222/63, 222/59, 222/136		
	N-Acetyl-Glufosinate-[acetyl]D ₃ (II -IS)·	225/63, 225/137		
Acquired mass transitions (m/z)	N-Acetyl-Glufosinate-[methyl]D ₃		225/63		
ricquireu mass transitions (m, z,	MPPA:	(12 10).	151/63, 151/107, 151/133		
	MPPA-D ₃ (IL-IS):		151/63, 151/107, 151/153 154/63, 154/136		
	Fosetyl-Al:		109/81, 109/63 (each detected as Fosetyl)		
	Fosetyl-Al-D ₁₅ (IL-IS):		114/82, 114/63 (each detected as Fosetyl- D_5)		
	Trifluoroacetic acid (TFA)				
	Trifluoroacetic acid (17A) Trifluoroacetic acid -13C ₂ (IL-IS):		113/69, 113/113, <mark>69/19</mark> 115/70		
	Cyanuric acid:		128/42, 128/85		
	Cyanuric acid- ¹³ C ₃ :		131/43, 131/87		
	Bromide:		81/81, 79/79		
	Chlorate:		83/67, 85/69		
	Chlorate- ¹⁸ O ₃ (IL-IS):		89/71, 91/73		
	Perchlorate:		99/83, 101/85		
	Perchlorate: Perchlorate- ¹⁸ O ₄ (IL-IS):		107/89, 109/91		
	Phosphonic acid:				
	•		81/79, 81/63		
	Phosphonic acid- ¹⁸ O ₃ (IL-IS):		87/85, 87/67		
	Difluoroacetic acid (DFA)		95/51, 95/95		
	Difluoroacetic acid -13C (IL-IS)		97/52		

³ https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EPRW%202020%20-%20PD87.pdf

Hints on Method 11

1. For general hints on analytes: See 5.6.1

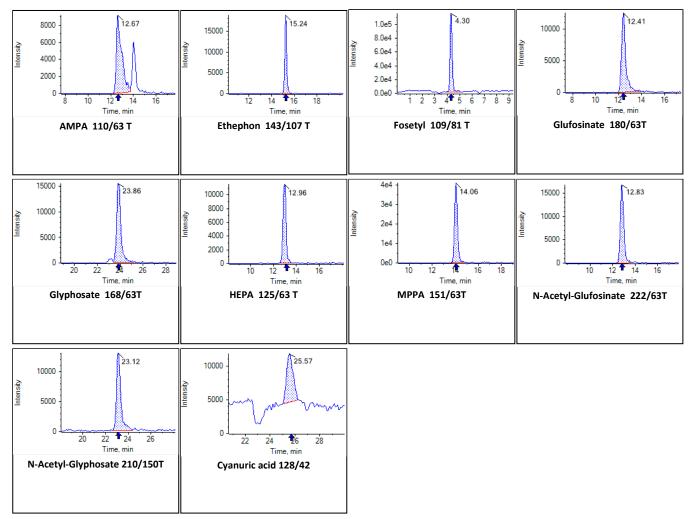
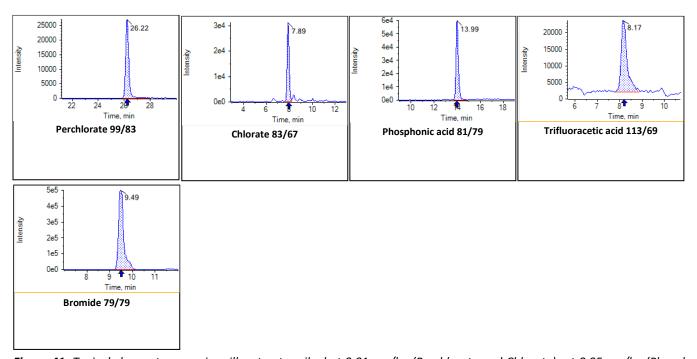



Figure 40: Typical chromatograms in cucumber extracts spiked at 0.05 mg/kg.

Figure 41: Typical chromatograms in milk extracts spiked at 0.01 mg/kg (Perchlorate and Chlorate); at 0.05 mg/kg (Phosphonic acid); 0.025 mg/kg (Trifluoroacetic acid) and 5 mg/kg (Bromide).

5.7. Calibration and Calculations

5.7.1. Using IS

Where IS is added to the sample before any aliquotation:

The following calculation approach requires that the ratio of the IS masses added to the test portions (**5.2.3**) and to the calibration standard(s) (16**5.5**) (m_{IS}^{sample} / $m_{IS}^{cal \ mix}$) is known and constant. By keeping the IS constant throughout the calibration levels the peak ratio $PR^{cal \ mix}$ ($A_{pest}^{cal \ mix}$ / $A_{IS}^{cal \ mix}$) of each calibration level can be plotted against the absolute mass of the pesticide $m_{pest}^{cal \ mix}$ rather than the ratio $m_{pest}^{cal \ mix}$ / $m_{IS}^{cal \ mix}$ (the $m_{IS}^{cal \ mix}$ is set as 1).

The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$PR^{cal mix} = a_{cal} \times m_{pest}^{cal mix} + b_{cal}$$
 (1)

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract ($PR^{sample} = A_{pest}^{Sample} / A_{IS}^{Sample}$), the correction factor ($m_{IS}^{sample} / m_{IS}^{cal mix}$) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(PR^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times \frac{m_{ISTD}^{Sample}}{m_{ISTD}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(2)

Reasonably (but not necessarily) the calibration standards should be prepared in such a way that the ratio m_{IS}^{sample} / $m_{IS}^{cal \, mix}$ equals the assumed volume ratio of sample extract versus calibration standard (20 for most samples and 40 for cereals, pulses, nuts and oilseeds). The absolute masses of the IS-WS I and II do not need to be necessarily known (see also the notes of **Table 2**).

Where IS is added to an aliquot of the extract

When adding the IS to an aliquot of the extract (e.g. 1 mL) the knowledge of the exact total volume of the sample extract becomes important. Water adjustment is thus essential and if it is done as described in **5.2.2** and **Table 37**, the total volume can be assumed to be exactly 20 mL. 1 mL sample extract will correspond to $1/20^{th}$ of the test portion (m_a) in case of most samples (or to $1/40^{th}$. in case of cereals, pulses, nuts and oilseeds, where extracts are diluted 2-fold during cleanup). The mass of the IS to be added to an aliquot (m_{IS}^{aliquot}) should be scaled according to the aliquot volume used (V_{aliquot}) with the IS mass ratio (m_{IS}^{aliquot} / m_{IS}^{cal mix}) being important for the calculation. Reasonably (but not necessarily) m_{IS}^{aliquot} should be derived using the following formula m_{IS}^{aliquot} = m_{IS}^{sample} x V_{aliquot}/20 (or m_{IS}^{aliquot} = m_{IS}^{sample} x V_{aliquot}/40 in case of cereals, pulses, nuts and oilseeds), with m_{IS}^{sample} being the IS mass that would have been added to the entire sample portion according to **5.2.2** and **Table 37**.

Following the above, the mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak ratio of pesticide and internal standard obtained from the sample extract ($PR^{sample} = A_{pest}^{sample} / A_{IS}^{sample}$), the correction factor ($m_{IS}^{aliquot} / m_{IS}^{cal mix}$) as well as the weight of the sample equivalents in the aliquot ($m_{aliquot} = m_a \times V_{aliquot} / 20$ or $m_{aliquot} = m_a \times V_{aliquot} / 40$ in case of a 2-fold dilution during cleanup).

$$w_R = \frac{(PR^{sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{aliquot}} \times \frac{m_{ISTD}^{aliquot}}{m_{ISTD}^{cal mix}} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(3)

Variables used

Mass of pesticide in calibration mixture	$m_{\it pest}^{\it cal\ mix}$	μg
Mass of pesticide in final extract	$m_{\it pest}^{\it sample}$	μg
Mass of internal standard in calibration mixture	$m_{ISTD}^{cal\ mix}$	μg
Mass of internal standard added to test portion (sample)	m_{ISTD}^{sample}	μg

Mass of internal standard added to aliquot of sample extract	$m_{\it ISTD}^{\it aliquot}$	μg
Volume of sample extract aliquot used (5.7.1 and 5.5.3) to spike the IS or for standard additions	$V^{{\it aliquot}}$	mL
Mass of test portion	m a	g
Mass of test portion represented in an aliquot	m _{aliquot}	g
Mass fraction of pesticide in the sample	W R	mg/kg
Peak area of pesticide obtained from calibration standard (mixture)	$A_{\it pest}^{\it cal\ mix}$	(counts)
Peak area of IS obtained from calibration standard (mixture)	$A_{ISTD}^{cal\;mix}$	(counts)
Peak area of pesticide obtained from the injected extract	A_{pest}^{sample}	(counts)
Peak area of IS obtained from the injected extract	A_{ISTD}^{sample}	(counts)
Peak ratio of pesticide vs. IS obtained from calibration mixture	PR ^{cal mix}	(dimensionless)
Peak ratio of pesticide vs. IS obtained from injected extract	PR sample	(dimensionless)
Slope of calibration graph	a cal	(dimensionless)
Bias of calibration graph (intercept)	b cal	(dimensionless)

5.7.2. Not using IS

If no appropriate ISs are used it is of high importance to properly compensate for matrix effects. For the compensation of matrix effects matrix-matched calibrations (5.5.2) and the standard additions approach (5.5.3) are recommended. In both cases the assumption is made that the total volume of the sample extract is exactly 20 mL. Adjustment of the water content (and extract volume) in the sample is thus paramount.

<u>Calculations when employing matrix-matched calibration without IS</u>

The calibration graph (to be plotted for each pesticide separately) is described by the following formula:

$$A_{pest}^{cal\ mix} = a_{cal} \times C_{pest}^{cal\ mix} + b_{cal} \quad \ \ \text{(1)}$$

The mass fraction (w_R) of a given pesticide in a given sample can be calculated as follows using the respective peak area of the pesticide obtained from the sample extract (A_{pest}^{sample}) and a correction factor (V) as well as the weight of the test portion (m_a).

$$w_{R} = \frac{(A_{pest}^{Sample} - b_{cal})}{a_{cal}} \times \frac{1}{m_{a}} \times V_{end} \left(\frac{\text{mg}}{\text{kg}}\right)$$
(2)

where V_{end} is the total volume of the sample extract (20 mL or 40 mL in case of a 2-fold dilution during cleanup).

All other variables are listed in 5.7.1.

<u>Calculations when employing the standard additions approach</u>

The standard additions approach is the method of choice where no appropriate IL-IS is available. This approach typically compensates matrix effect better than the matrix-matched calibrations (5.5.2). The mass fraction of the pesticide in the sample (w_R) is calculated via linear regression using a graphical presentation as shown in **Figure 42**. The Y-intercept of the calibration graph will indicate the pesticide mass contained in the non-fortified aliquot of the sample extract.

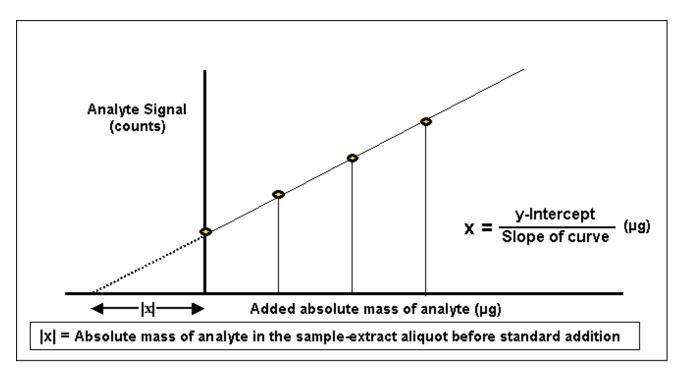


Figure 42: Internal calibration using the procedure of standard additions, schematically

Key:

Y Peak area of analyte

X Added absolute mass of analyte $\,m_{\it pest}^{\it std\,\,add}\,$ in $\mu {
m g}$

absolute amount of analyte in the sample extract (in μ g) before standard addition (y = 0)

With
$$x = \frac{y - \text{int } ercept(b)}{slope of the curve(a)}$$
 (µg)

The calculation is performed as follows using the regression graph shown in

$$w_{R} = \frac{b}{a} \times \frac{V_{end}}{V_{al} \times m_{a}} \left(\frac{\text{mg}}{\text{kg}}\right)$$

where:

b Y-intercept of the calibration graph of the analyte in question;

a Slope of the calibration graph of the analyte in question $(1/\mu g)$;

Vend Volume of sample extract (mL) (should be 20 mL)

 V_{al} Volume of aliquots used for the standard additions approach (mL)

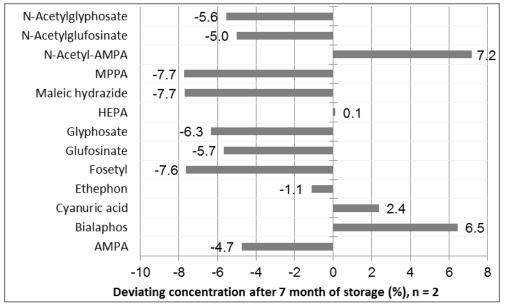
 m_a Weight of initial sample portion (g)

6. Stability and purity of standards

A general overview regarding the stability of Glyphosate & Co. compounds in stock solutions is given in **Table 41**. For the compounds of this method (Maleic Hydrazide and Cyanuric acid excluded) the use of water with 10 % acetonitrile was shown to be a suitable solvent, see also **Table 45**.

In case of Ethephon (native compound or IL-IS), which is sensitive towards neutral and alkaline pH, acidifying the stock solution with hydrochloric acid is recommended. The addition of 0,1 % (v/v) of concentrated HCl (37 %) is proposed. This acid content will also sufficiently stabilize 100-fold diluted working solutions (of e.g. 10 μ g/mL) without the need of adding further acid. Other compounds of this method are not markedly compromised in their stability by this acid content.

The previously recommended solvent of methanol/water+1 % formic acid 1/1 proved to be less suitable in the long run with methylations, formylations as well as dehydrations being observed for some compounds, such as glyphosate. To some extent degradation also takes place in QuPPe extracts (consisting of Water/Methanol+1 % Formic acid (1/1, v/v)) with AMPA and N-Acetyl-Glyphosate being most affected. In general degradation is negligible if extracts stored at room temperature are analyzed within 14 days. In any case such losses can be effectively corrected by the respective IL-ISs (if added at any stage prior to extract storage). The stability of compounds of the "Glyphosate & Co. group" in water containing 10% acetonitrile, over a period of 7 months in the refrigerator, is demonstrated in **Figure 43**. The stability in stock solutions is generally better that in working solutions.


Table 41: Overview of experiments on long-term stability "Glyphosate & Co." compounds dissolved in differently composed solvents. Concentration of analytes in stored mixtures 10 μ g/mL; storage duration: 6 months; storage temperature: 6°C

				C	ompositi	on of st	orage s	olvent				
		Pure	Wate	r	Wat	er / Me	ОН	Pure I	MeOH	Water / ACN		
					(MeOH	25 and 5	50 %)*			(ACN 2	5 and 5	0 %)*
Native Compound	w/o acid	1% FA	1% AA	0.1% HCI**	w/o acid	1% FA	1% AA	w/o acid	1% FA	w/o acid	1% FA	1% AA
AMPA	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Bialaphos	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Cyanuric acid	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Ethephon	×	✓	✓	✓	NT	NT	NT	NT	✓	NT	NT	NT
Fosetyl-Al	✓	×	✓	×	✓	NT	NT	NT	NT	NT	NT	NT
Glufosinate	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
Glyphosate	✓	×	×	NT	×	×	×	NT	NT	×	×	×
HEPA	NT	NT	NT	NT	NT	NT	NT	✓	✓	NT	NT	NT
Maleic Hydrazide	NT	NT	NT	NT	NT	NT	NT	✓	✓	NT	NT	NT
MPPA	✓	✓	✓	NT	×	×	×	NT	NT	✓	✓	✓
N-Acetyl-AMPA	✓	✓	✓	NT	×	æ	×	NT	NT	✓	✓	✓
N-Acetyl-Glufosinate	NT	NT	NT	NT	✓	NT	NT	NT	NT	NT	NT	NT
N-Acetyl-Glyphosate	✓	✓	✓	NT	×	×	×	NT	NT	✓	✓	✓

 $[\]checkmark$ = sufficiently stable (deviating less than ± 10 % from a freshly prepared standard of the same composition); \times =not stable MeOH = Methanol; ACN = Acetonitrile

^{*} Solutions of both 25 % and 50 % of organic solvent have been tested.

^{** 0.1%} HCl-conc. (37%) in water (v/v)

Figure 43: Deviations of the concentration of Glyphosate & Co. compounds in a working solution of 10 μ g/mL water containing 10 % acetonitrile and 1% HCl conc. (v/v), following 7 months of storage at 6 °C. Compared against a freshly prepared standard of same composition

Issues concerning the purity of N-Acetyl-Glufosinate D₃: There is two types of N-Acetyl-Glufosinate D₃ standards on the market. Both contain the three deuterium atoms on a methyl group, but the first one contains them on the methyl group of the acetyl moiety and the other one on the methyl group that is attached to the phosphorus atom. In theory the acetyl group can be hydrolytically detached, native glufosinate may be formed in working solutions of N-Acetyl-Glufosinate (acetyl-D₃), leading to false positive results. Fortunately the degradation rate observed in the water:acetonitrile 9:1 mixture (see Figure 43) was negligible. More important is the content of native glufosinate in purchased N-Acetyl-Glufosinate (acetyl-D₃) standards. Before first use the standards should be checked for the presence of native glufosinate impurities and object the product if it does not meet the producer's specifications. The levels of native glufosinate impurities depend on the manufacturer and the badge. Where e.g. 0.5 μg IL-IS is added to 1 g sample, the presence of 2% native glufosinate (a typical level encountered) can lead to glufosinate levels of 0.01 mg/kg.

7. Performance Data

Validation data of the presented methods according to **SANTE/11312/2021** guidance document are shown at the EURL validation database at www.eurl-pesticides-datapool.eu. Exemplary LOQs of the presented methods are listed in **Table 42.**

Table 42: Exemplary validation data

- *The extract was prepared according to QuPPe PO V10 or newer versions, so <u>EDTA solution was used during extraction</u> (for oilseeds, nuts pulses and cereals). All other data was generated <u>without</u> using EDTA solution during extraction.
- **analysed with Waters Xevo TQ-S μ
- *** spiked separately from co-eluting Fosetyl to avoid interference that affects quantification

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	AMPA	High water content + acidic	Grapes	0.02	n Recov.	9	
	AMPA	Dry (cereals)	Barley	0.02	5	101	14
	AMPA	Dry (pulses)	Lentil	0.1	10	95	17
	AMPA	Dry (cereals)	Wheat flour	0.1	5	119	6
	AMPA	High water content	Apple	0.02	17	100	12
	AMPA	Dry (cereals)*	Rice	0.1	5	99	6
	AMPA	Dry (pulses)*	Soybean	0.1	5	106	6
	AMPA	High sugar and low water content	Honey	0.02	5	101	2
	Cyanuric Acid	High water content	Cucumber	0.02	3	106	13
	Cyanuric Acid	Dry (cereals)*	Rice	0.1	5	105	5
	Cyanuric Acid	Dry (pulses)*	Soybean	0.1	5	115	12
	Ethephon	Dry (cereals)	Barley	0.02	5	110	2
	Ethephon	Dry (cereals)	Wheat flour	0.1	5	85	6
	Ethephon	High water content	Apple	0.02	7	105	11
	Ethephon	High water content	Cucumber	0.02	3	101	11
	Ethephon	High water content + acidic	Grapes	0.01	5	104	4
	Ethephon	Dry (cereals)*	Rice	0.02	5	92	8
	Ethephon	Dry (pulses)*	Soybean	0.02	5	107	11
	Ethephon	High sugar and low water content	Honey	0.02	5	101	7
M1.3	Fosetyl	High water content + acidic	Strawberry	0.1	6	94	4
IVII.3	Fosetyl	Dry (cereals)	Barley	0.02	5	106	7
	Fosetyl	High water content	Apple	0.02	7	104	5
	Fosetyl	High water content	Cucumber	0.02	3	103	5
	Fosetyl	High water content + acidic	Grapes	0.01	5	105	2
	Fosetyl	Dry (cereals)*	Rice	0.02	5	91	3
	Fosetyl	Dry (pulses)*	Soybean	0.02	5	96	4
	Fosetyl	High sugar and low water content	Honey	0.02	5	109	4
	Glufosinate	High water content + acidic	Grapes	0.05	5	96	10
	Glufosinate	Dry (cereals)	Barley	0.02	5	101	13
	Glufosinate	Dry (cereals)	Wheat flour	0.1	5	85	5
	Glufosinate	High water content	Apple	0.02	7	106	8
	Glufosinate	High water content	Cucumber	0.02	3	115	4
	Glufosinate	Dry (cereals)*	Rice	0.06	5	96	5
	Glufosinate	Dry (pulses)*	Soybean	0.06	5	105	8
	Glufosinate	High sugar and low water content	Honey	0.02	5	96	2
	Glyphosate	High water content + acidic	Grapes	0.02	12	112	8
	Glyphosate	High water content + acidic	Grapes	0.02	5	102	6
	Glyphosate	Dry (cereals)	Barley	0.02	5	105	8
	Glyphosate	Dry (pulses)	Lentil	0.1	11	107	18
	Glyphosate	High oil content, dry (oilseeds, nuts)	Bean, Soya	0.1	10	95	10

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level (mg/kg)	n	Recov. %	RSD
	Glyphosate	High water content	Apple	0.02	16	93	12
	Glyphosate	High water content	Cucumber	0.02	3	94	3
	Glyphosate	Dry (cereals)*	Rice	0.1	5	91	6
	Glyphosate	Dry (pulses)*	Soybean	0.06	5	99	5
	Glyphosate	High sugar and low water content	Honey	0.02	5	105	4
	НЕРА	Dry (cereals)	Barley	0.02	5	106	17
	НЕРА	High water content	Apple	0.02	7	109	14
	HEPA	High water content	Cucumber	0.02	3	104	6
	HEPA	Dry (cereals)*	Rice	0.04	5	98	1
	НЕРА	Dry (pulses)*	Soybean	0.04	5	93	6
	HEPA	High sugar and low water content	Honey	0.02	5	100	2
	Maleic Hydrazide	Dry (cereals)	Barley	0.02	5	100	9
	Maleic Hydrazide	High water content	Apple	0.02	7	110	9
	Maleic Hydrazide	High water content	Cucumber	0.02	3	103	13
	Maleic Hydrazide	High water content, extract rich	Onion	0.1	5	106	4
	Maleic Hydrazide	High water content + acidic	Grapes	0.01	5	110	11
	Maleic Hydrazide	Dry (cereals)*	Rice	0.01	5	96	8
	Maleic Hydrazide	Dry (pulses)*		0.08	5	97	14
	·		Soybean				
	MPPA	Dry (cereals)	Barley Wheat flour	0.02	5	106	10
	MPPA	Dry (cereals)		0.1	5	85	1
	MPPA	High water content	Apple	0.02	7	88	11
	MPPA	High water content	Cucumber	0.02	3	107	14
	MPPA	High water content + acidic	Grapes	0.02	5	102	3
	MPPA	Dry (cereals)*	Rice	0.04	5	97	3
	MPPA	Dry (pulses)*	Soybean	0.04	5	101	3
	MPPA	High sugar and low water content	Honey	0.02	5	99	2
	N-Acetyl AMPA	Dry (cereals)	Barley	0.02	5	108	3
	N-Acetyl AMPA	High water content	Apple	0.02	7	120	11
	N-Acetyl AMPA	High water content	Cucumber	0.02	3	89	7
	N-Acetyl Glufosinate	Dry (cereals)	Barley	0.02	5	103	5
	N-Acetyl Glufosinate	High water content	Apple	0.02	7	112	9
	N-Acetyl Glufosinate	High water content	Cucumber	0.02	3	101	3
	N-Acetyl Glufosinate	High water content + acidic	Grapes	0.01	5	97	4
	N-Acetyl Glufosinate	Dry (cereals)*	Rice	0.04	5	99	2
	N-Acetyl Glufosinate	Dry (pulses)*	Soybean	0.04	5	98	3
	N-Acetyl Glufosinate	High sugar and low water content	Honey	0.02	5	99	2
	N-Acetyl Glyphosate	High water content + acidic	Grapes	0.01	10	109	8
	N-Acetyl Glyphosate	Dry (cereals)	Corn flour	0.02	10	104	10
	N-Acetyl Glyphosate	Dry (pulses)	Lentil	0.05	10	104	8
	N-Acetyl Glyphosate	High oil content, dry (oilseeds, nuts)	Bean, Soya	0.05	10	102	7
	N-Acetyl Glyphosate	High water content	Apple	0.01	10	109	8
	N-Acetyl Glyphosate	Dry (cereals)*	Rice	0.1	5	94	2
	N-Acetyl Glyphosate	Dry (pulses)*	Soybean	0.1	5	101	3
	N-Acetyl Glyphosate	High sugar and low water content	Honey	0.02	5	100	3
	Bromate	High water content	Lettuce	0.02	5	103	6
	Bromide (inorg.)	High water content + acidic	Currant	1	5	98	4
	Bromide (inorg.)	High water content	Cauliflower	1	5	94	12
	Chlorate	High water content + acidic	Currant	0.01	5	102	7
	Chlorate	Dry (cereals)	Rice	0.01	5	102	2
M1.4		, , ,				100	5
	Chlorate	High water content	Current	0.01	5		
	Perchlorate	High water content + acidic	Currant	0.01	5	100	4
	Perchlorate	Dry (cereals)	Barley	0.01	5	106	2
	Perchlorate	Dry (cereals)	Rice	0.02	5	100	7
	Perchlorate	High water content	Apple	0.01	5	108	3

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
	Perchlorate	High water content	Cauliflower	(mg/kg) 0.01	5	97	3
	Phosphonic Acid	High water content + acidic	Currant	0.01	5	102	3
	Phosphonic Acid	High water content + acidic	Mandarine	0.1	5	99	10
	Phosphonic Acid	Dry (cereals)	Rice	0.2	5	97	4
	Phosphonic Acid	High water content	Apple	0.2	6	102	9
	Phosphonic Acid		Cauliflower	0.1	5	87	2
	Phosphonic Acid	High water content High water content	Mango	0.1	5	99	9
	AMPA	-		0.02	5	102	8
	AMPA	High water content	Apple	0.02		112	8
		High water content + acidic	Grape		5		7
	AMPA	Dry (oilseeds)	Soy flour Lentils	0.1	5	92	
	AMPA	Dry (pulses)		0.1	5	103	6
	Ethephon	High water content	Apple	0.025	5	97	0
	Ethephon	High water content + acidic	Grape	0.025	5	80	8
	Ethephon	Dry (oilseeds)	Soy flour	0.05	5	92	7
	Ethephon	Dry (pulses)	Lentils	0.05	5	97	4
	Fosetyl	High water content	Apple	0.01	5	99	9
	Fosetyl	High water content + acidic	Grape	0.01	5	100	3
	Fosetyl	Dry (oilseeds)	Soy flour	0.1	5	98	3
	Fosetyl	Dry (pulses)	Lentils	0.1	5	99	1
	Glufosinate	High water content	Apple	0.02	5	94	2
	Glufosinate	High water content + acidic	Grape	0.02	5	106	4
	Glufosinate	Dry (oilseeds)	Soy flour	0.1	5	98	4
	Glufosinate	Dry (pulses)	Lentils	0.1	5	101	5
M1.5	Glyphosate	High water content	Apple	0.02	5	98	8
IVII.5	Glyphosate	High water content + acidic	Grape	0.02	5	106	5
	Glyphosate	Dry (oilseeds)	Soy flour	0.1	5	102	3
	Glyphosate	Dry (pulses)	Lentils	0.1	5	102	4
	НЕРА	High water content	Apple	0.02	5	102	8
	НЕРА	High water content + acidic	Grape	0.02	5	100	6
	НЕРА	Dry (oilseeds)	Soy flour	0.1	5	96	4
	НЕРА	Dry (pulses)	Lentils	0.1	5	98	2
	MPPA	High water content	Apple	0.02	5	97	4
	MPPA	High water content + acidic	Grape	0.02	5	106	3
	MPPA	Dry (oilseeds)	Soy flour	0.1	5	103	1
	MPPA	Dry (pulses)	Lentils	0.1	5	103	2
	N-Acetyl-Glufosinate	High water content	Apple	0.01	5	100	3
	N-Acetyl-Glufosinate	High water content + acidic	Grape	0.01	5	103	3
	N-Acetyl-Glufosinate	Dry (oilseeds)	Soy flour	0.05	5	99	3
	N-Acetyl-Glufosinate	Dry (pulses)	Lentils	0.05	5	102	1
	N-Acetyl-Glyphosate	Dry (paises)	Soy flour	0.05	5	105	10
	N-Acetyl-Glyphosate	Dry (pulses)	Lentils	0.05	5	99	12
	AMPA	High water content	Cucumber	0.03	5	99	7
	AMPA Ethorhor	Dry (pulses)*	Lentil	0.1	5	107	10
	Ethephon	High water content	Cucumber	0.02	5	95	5
	Ethephon	Dry (pulses)*	Lentil	0.1	5	89	12
	Fosetyl	High water content	Cucumber	0.02	5	98	3
M1.6a:	Fosetyl	Dry (pulses)*	Lentil	0.1	5	104	3
Torus DEA	Glufosinat	High water content	Cucumber	0.02	5	95	4
. O. U.S DEA	Glufosinat	Dry (pulses)*	Lentil	0.1	5	82	8
	Glyphosat	High water content	Cucumber	0.02	5	107	3
	Glyphosat	Dry (pulses)*	Lentil	0.1	5	115	9
	НЕРА	High water content	Cucumber	0.02	5	108	8
	НЕРА	Dry (pulses)*	Lentil	0.1	5	100	5
	MPPA	High water content	Cucumber	0.02	5	103	3

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level (mg/kg)	n	Recov.	RSD
	MPPA	Dry (pulses)*	Lentil	0.1	5	108	5
	N-Acetyl-AMPA	High water content	Cucumber	0.02	5	104	1
	N-Acetyl-Glufosinat	High water content	Cucumber	0.02	5	98	2
	N-Acetyl-Glufosinat	Dry (pulses)*	Lentil	0.1	5	113	4
	N-Acetyl-Glyphosat	High water content	Cucumber	0.02	5	98	2
	N-Acetyl-Glyphosat	Dry (pulses)*	Lentil	0.1	5	101	8
	AMPA	High water content + acidic	Strawberry	0.05	5	106	6
	Bromide (inorg.)	High water content + acidic	Lemon	5	5	101	6
	Ethephon	High water content + acidic	Matrix	2			
	Analyte Commodity Group	10					
	Fosetyl	High water content + acidic	Strawberry	0.01	5	99	1
	Fosetyl	Dry (oilseeds)*	Soybean	Matrix Level (mg/kg) n Recov. % Lentil 0.1 5 108 Cucumber 0.02 5 104 Cucumber 0.02 5 98 Lentil 0.1 5 113 Cucumber 0.02 5 98 Lentil 0.1 5 101 Strawberry 0.05 5 106 Lemon 5 5 101 Strawberry 0.01 5 105 Soybean 0.02 5 110 Strawberry 0.01 5 99 Soybean 0.02 5 98 Strawberry 0.03 5 98 Strawberry 0.05 5 104 Soybean 0.1 5 101 Strawberry 0.02 5 96 Strawberry 0.02 5 96 Strawberry 0.02 5 97 Soybea	3		
	Glufosinate	High water content + acidic	Strawberry	0.03	5	Recov. 5 108 5 104 5 98 5 101 5 106 5 101 5 105 5 101 5 99 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 99 5 99 5 99 5 99 5 99 5 100 5 100 5 100 5 100 5 100 5 100 5 100	10
	Glufosinate	Dry (oilseeds)*	Soybean	0.06	5	96	6
	Analyte	104	8				
	* *		•	0.1		101	5
	1.1		· · · · · · · · · · · · · · · · · · ·		n Recov. % 5 108 5 104 5 5 104 5 5 101 5 5 101 5 5 101 5 5 100 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 98 5 5 99 5 99 5 99 5 109 5 99 5 100 5 100 5 101 5 102 5 99	8	
M1.6b:						Recov. 5 108 5 104 5 98 5 101 5 101 5 101 5 101 5 101 5 100 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 98 5 99 5 99 5 92 5 97 5 99 5 109 5 99 5 100 5 100 5 100 5 100 5 100 5 100	4
APPC		, , , , ,	-		_		13
							13
			•		n Recov. % 5 108 5 104 5 98 5 113 5 98 5 101 5 106 5 101 5 105 5 110 5 99 5 98 5 98 5 98 5 90 5 104 5 107 5 99 5 96 5 107 5 99 5 96 5 92 5 100 5 92 5 100 5 92 5 100 5 92 5 100 5 97 5 99 5 99 5 105 5 97 5 99 5 99 5 105 5 97 5 109 5 99 5 100 5 112 5 100 5 112 5 100 5 99 5 100 5 99 5 100 5 112 5 100 5 99 5 100 5 99 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100 5 100 5 112 5 100	6	
	·						5
	,	, , ,	,				1
			·				5
			•		_		3
	•	- U					7
		, , , ,					2
							2
							2
		-				1	
N/1 7a+	, 0,	-					2.1
		-					5.6
Torus DEA		· ·				5 108 5 104 5 98 5 101 5 106 5 101 5 105 5 101 5 99 5 98 5 98 5 98 5 98 5 98 5 98 5 96 5 104 5 107 5 99 5 92 5 97 5 92 5 97 5 99 5 99 5 105 5 97 5 99 5 109 5 100 5 112 5 100 5 100 5 100 5 104 5 104 5 104 <t< td=""><td>2.6</td></t<>	2.6
	· ·	-					4.6
	1 07	9			_		3
					5 98 5 113 5 98 5 101 5 105 5 105 5 110 5 99 5 98 5 96 5 104 5 101 5 107 5 99 5 96 5 107 5 99 5 96 5 90 5 92 5 92 5 97 5 99 5 99 5 109 5 99 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 104 <	1	
	Ethephon Dry Fosetyl Hig Fosetyl Dry Glufosinate Higi Glufosinate Dry Glyphosate Higi Glyphosate Dry HEPA Higi MPPA Higi MPPA Dry N-Acetyl-Glufosinate Dry N-Acetyl-Glufosinate Dry N-Acetyl-Glyphosate Higi N-Acetyl-Glyphosate Higi N-Acetyl-Glyphosate Dry Phosphonic Acid Dry Difluoracetic acid Higi Bromide (iorg.) Higi Bromide (iorg.) Higi Bromide (inorg.) Higi Bromide (inorg.) Dry Chlorate Higi Bromide (inorg.) Dry Chlorate Higi Phosphonic acid Higi Bromide (inorg.) Higi Dry Perchlorate Higi Phosphonic acid Higi Phosphonic acid Higi Phosphonic acid Higi Dry Perchlorate Higi Dry Perchlorate Higi Dry Difluoracetic acid Higi Dry Difluoracetic acid Higi Dry Difluoracetic acid Higi DETP Higi DEP Higi DMDTP Higi						6
		, ,					6
							14
	•	-					8
							18
M1.7b:		-	<u> </u>				2
APPC		•	Grape	0.05	5		3
ALLC	Bromide (inorg.)	High water content + acidic	Grape	0.25	5	101	5
	Thiocyanate	High water content + acidic	Grape	0.02	5	104	4
	DETP	High water content + acidic	Grape	0.01	5	105	8
	DEP	High water content + acidic	Grape	0.025	5		3
	DMDTP	High water content + acidic	· ·	0.01		95	6
	DMTP	High water content + acidic	Grape	0.01		103	6
	DEDTP	High water content + acidic	Grape	0.01	5	93	6
	DMP	High water content + acidic	Grape	0.01	5	110	11
	Chlorate	High water content + acidic	Lemon	0.03	5	99	4
N/1 O	Chlorate	Dry (oilseeds)*	Sesame	0.12	5	102	6
M1.8	Cyanuric Acid	High water content + acidic	Lemon	0.05	5	99	1
	Cyanuric Acid	Dry (oilseeds)*	Sesame	0.2	5	106 101 105 110 99 98 98 98 96 104 101 107 99 96 92 100 92 97 95 99 99 105 97 109 99 100 112 100 100 81 115 91 104 100 100 81 115 91 104 100 102 99 99 101 104 105 114 95 103 93 110 99 102 99	2

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level (mg/kg)	n	Recov.	RSD
	Maleic Hydrazide	Dry (oilseeds)*	Sesame	0.2	5	107	16
	Perchlorate	High water content + acidic	Lemon	0.01	5	103	5
	Perchlorate	Dry (oilseeds)*	Sesame	0.04	Image: Recovery black Recovery black 5 107 5 103 5 101 5 88 5 111 5 108 5 102 5 103 5 99 5 94 5 96 5 98 5 100 5 98 5 100 5 95 5 104 5 97 5 104 5 97 5 103 5 106 5 98 5 106 5 98 5 101 5 98 5 106 5 98 5 102 6 107 5 101 7 93	101	6
	АМРА	Dry (oilseeds)*	Soybean	0.2	5	88	5.9
	Ethephon	Dry (oilseeds)*	Soybean	0.02	5	111	11.7
	Fosetyl	Dry (oilseeds)*	Soybean	0.02	5	108	3.9
	Glufosinat	Dry (oilseeds)*	Soybean	0.06	5	102	4.8
	Glyphosat	Dry (oilseeds)*	Soybean	0.1	n Recov. % 5 5 107 5 103 5 101 5 88 5 102 5 103 5 99 5 94 5 96 5 98 5 100 5 95 5 104 5 97 5 104 5 101 5 97 5 106 5 98 5 106 5 98 5 106 5 98 5 106 5 98 5 102 6 107 5 101 7 93 6 92 5 97 7 103 6 102	2.0	
	НЕРА	Dry (oilseeds)*	Soybean	0.04	5	n Recov. 5 107 5 103 5 101 5 88 5 102 5 103 5 99 5 94 5 96 5 98 5 100 5 98 5 100 5 97 5 104 5 101 5 97 5 106 5 98 5 103 5 104 5 97 5 106 5 98 5 106 5 98 5 100 5 98 5 101 5 102 6 107 5 102 6 99 5 97	5.3
M1.9	MPPA	Dry (oilseeds)*	Soybean	0.08	5		6.9
	N-Acetyl-Glufosinat		•	0.08			11.9
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	5	n Recov. 5 107 5 103 5 101 5 88 5 111 5 108 5 102 5 103 5 99 5 96 5 98 5 100 5 98 5 100 5 95 5 104 5 101 5 97 5 106 5 98 5 106 5 98 5 106 5 98 5 106 5 98 5 106 5 101 5 98 5 102 6 107 5 101 7 93 5 97	4.1	
	Maleic Hydraride		1.3				
		•					14.1
M1.9		•			_		2.2
	·	•					3.2
			,				4.3
W1.10							2.7
N/1 10	· ·				n Recov. % 5 107 5 103 5 5 101 5 5 102 5 5 102 5 5 103 5 5 99 5 5 96 5 5 96 5 5 98 5 5 100 5 5 98 5 5 104 5 5 97 5 5 104 5 5 104 5 5 104 5 5 104 5 5 104 5 5 106 5 5 106 5 5 106 5 5 101 5 5 102 6 6 92 5 5 <td< td=""><td>4.6</td></td<>	4.6	
IVII.IU			,			Recov. % 5 107 5 103 5 101 5 88 5 111 5 108 5 102 6 103 6 99 6 94 6 98 6 100 6 100 6 95 6 104 6 101 6 97 6 103 6 106 6 98 6 106 6 101 6 107 6 101 6 97 6 102 6 107 6 101 7 93 6 92 7 103 6 97 7 103 6 97 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 99 7 103 6 102 6 97 7 103 6 99 7 103 6 102 6 97 7 103 6 99 7 103 6 102 6 99 7 103 6 103 6 99 7 104 6 105 6 106 6 107 6 108 6 99 6 101 6 109 7 107 6 102 6 103 6 103 6 109 7 107 6 102 6 103 6 109 7 107 6 102 6 103 6 109 7 107 6 102 6 103 6 109 7 107 6 109 7 107 6 109 7 107 6 109 7 107 6 109 7 107 6 109 7 107 6 109 7 107 6 109 7 109 8 100 8 100 8 100 8 100 8 100	1.8
							8.1
		9					8.3
		•					5.3
		3	Lemon		_	Recov. % 107 103 101 88 111 108 102 103 99 94 96 98 100 100 95 104 101 97 103 106 98 106 101 102 107 111 93 92 99 94 97 97 103 102 107 111 109 107 103 109 101 109 107 100 109 107 101 109 107 101 109 107 109 107 109 109 101 109 107 109 109 107 109 109 101 109 107 109 109 101 109 107 109 109 109 101 109 107 109 109 101 109 107 109 109 109 101 109 107 109 109 101 109 107 109 109 109 101 109 107 109 109 109 101 109 109 109 101 109 109	9.3
				_			5
	Amitrole	Dry (cereals)	Barley				2
	Amitrole			0.01			11
	Amitrole	High water content	Cucumber	0.01		92	4
	Chloridazon, Desphenyl-	High water content + acidic	Currant	0.02	5	99	4
	Chloridazon, Desphenyl-	Other	Swine meat	0.02	5	94	4
	Chloridazon, Desphenyl-	High water content	Lettuce	0.02	5	97	3
	Chlormequat	High water content + acidic	Grapes	0.01	6	93	10
	Chlormequat	High water content + acidic	Grapes	0.2	5	102	1
	Chlormequat	Dry (cereals)	Barley	0.01	5	97	5
	Chlormequat	Dry (cereals)	Wheat flour	0.1	5	97	5
	Chlormequat	High oil content, wet (oily fruits)	Avocado	0.01	7	103	8
	Chlormequat	High water content	Apple	0.01	6	102	6
	Chlormequat	High water content	Cucumber	0.01	6	103	4
		High water content	Potato	0.01	6	99	4
M4.1	<u> </u>					101	4
	•		·				6
	·		,				2
	•						8
	,						8
	,		-				1
							6
			,				
							10
		•			_		9
							12
		3					1
			Apple		_		3
		High water content	Mango	0.1		101	14
	Difenzoquat	Dry (cereals)	Barley	0.01	5	99	8
					-		11

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov. %	RSD
	Diquat	Dry (cereals)	Barley	(mg/kg) 0.01	10	103	7
	Diquat	High water content	Apple	0.01	5	107	4
	ETU	Dry (cereals)	Barley	0.01	5	96	10
	ETU	High water content	Apple	0.01	7	102	9
	Melamine	High water content + acidic	Grapes	0.01	6	87	13
	Melamine	High oil content, dry (oilseeds, nuts)	Bean, Soya	0.02	3	109	5
	Melamine	High oil content, wet (oily fruits)	Avocado	0.01	7	108	6
	Mepiquat	High water content + acidic	Grapes	0.01	6	95	5
	Mepiquat	High water content + acidic	Orange	0.01	6	101	9
	Mepiquat	Dry (cereals)	Barley	0.01	5	108	3
	Mepiquat	Dry (cereals)	Wheat flour	0.01	5	102	5
	Mepiquat	High oil content, wet (oily fruits)	Avocado	0.01	6	104	5
	Mepiquat	High water content	Apple	0.01	6	98	7
	Mepiquat	High water content	Cucumber	0.01	6	107	6
	Mepiquat	High water content	Potato	0.01	6	99	3
	Morpholine	High water content + acidic	Mandarine	0.01	5	95	7
	Morpholine	High water content	Apple	0.1	5	94	3
	Morpholine	High water content	Mango	0.1	5	95	2
	•		-		_		9
	Nereistoxin Nereistoxin	High water content + acidic Dry (cereals)	Grapes Barley	0.01	6 5	93	13
		, , , ,	Avocado	0.01	_	103	6
	Nereistoxin	High oil content, wet (oily fruits)		0.01	5 6	118	2
	Nereistoxin	High water content	Apple Potato	0.01	6	113	9
	Nereistoxin	High water content					
	Paraquat	Dry (cereals)	Barley	0.01	10	106	15
	Paraquat	High oil content, wet (oily fruits)	Avocado	0.05	5	83 106	10
	Paraquat	High water content	Apple	0.01	10	103	13
	Paraquat PTU	High water content	Potato	0.01	5	113	3
	Triethanolamine	Dry (cereals)	Barley Mandarine	0.01	_	112	4
	Triethanolamine	High water content + acidic		0.1	5		6
		High water content	Apple	0.1	5	108 120	5
	Triethanolamine Triethanolamine	High water content	Mango		3		11
		High water content	Pear	0.1	6	107 93	7
	Trimesium	High water content + acidic	Grapes				-
	Trimesium	Dry (cereals)	Barley	0.01	5	118	3
	Trimesium	Dry (cereals)	Wheat flour	0.1	5	105	2
	Trimesium	High oil content, wet (oily fruits)	Avocado	0.01	7	93	14
	Trimesium	High water content	Potato	0.01	6	84	5
	Aminocyclopyrachlor	High water content	Apple	0.01	5	110	5
	Aminocyclopyrachlor	Dry (cereals)	Oat	0.02	5	106	7
	Aminocyclopyrachlor	High water content	Cucumber	0.01	5	101	6
	Aminocyclopyrachlor	High water content + acidic	Lemon	0.01	5	112	9
	Aminocyclopyrachlor	High water content	Mint	0.01	5	108	7
	Aminocyclopyrachlor	High sugar and low water content	Honey	0.05	5	97	7
	Amitole	High water content	Apple	0.01	5	99	6
	Amitole	Dry (cereals)	Oat	0.02	5	117	4
M4.2	Amitole	High water content + acidic	Raspberry	0.01	5	120	5
	Amitole	High water content	Cucumber	0.01	5	104	6
	Amitole	High water content + acidic	Lemon	0.01	5	96	4
	Amitrole	High sugar and low water content	Honey	0.02	5	113	8
	Chlormequat	High water content	Cucumber	0.01	5	106	3
	Chlormequat	High water content + acidic	Lemon	0.01	5	103	2
	Chlormequat	High water content	Mint	0.01	5	102	1
	Chlormequat	High water content	Apple	0.01	5	101	2
	Chlormequat	Dry (cereals)	Oat	0.02	5	119	2

Method	Analyte	Commodity Group	Matrix	Spiking Level (mg/kg)	n	Mean Recov.	RSD
	Chlormequat	High sugar and low water content	Honey	0.02	5	104	4
	Chloridazon-desphenyl	High water content	Cucumber	0.01	5	104	3
	Chloridazon-desphenyl	High water content + acidic	Lemon	0.01	5	108	8
	Chloridazon-desphenyl	High water content	Mint	0.01	5	108	10
	Chloridazon-desphenyl	High water content	Apple	0.01	5	97	5
	Chloridazon-desphenyl	Dry (cereals)	Oat	0.02	5	113	9
	Cyromazine	High water content	Cucumber	0.01	5	101	5
	Cyromazine	High water content + acidic	Lemon	0.01	5	95	3
	Cyromazine	High water content	Mint	0.01	5	100	5
	Cyromazine	High water content	Apple	0.01	5	98	3
	Cyromazine	Dry (cereals)	Oat	0.02	5	114	4
	Cyromazine	High sugar and low water content	Honey	0.02	5	107	3
	Daminozide	High water content	Apple	0.01	5	101	2
	Daminozide	Dry (cereals)	Oat	0.02	5	116	2
	Daminozide	High water content + acidic	Raspberry	0.01	5	119	3
	Daminozide	High water content	Cucumber	0.01	5	103	6
	Daminozide	High water content + acidic	Lemon	0.01	5	102	1
	Daminozide	High water content	Mint	0.01	5	104	3
	Daminozide	High sugar and low water content	Honey	0.02	5	105	3
	Diethanolamin	Dry (cereals)	Oat	0.02	5	106	14
	Difenzoquat	High water content	Cucumber	0.01	5	105	1
	Difenzoquat	High water content + acidic	Lemon	0.01	5	105	3
	Difenzoquat	High water content	Apple	0.01	5	105	4
	Difenzoquat	Dry (cereals)	Oat	0.02	5	97	6
	Difenzoquat	High sugar and low water content	Honey	0.02	5	98	1
	ETU	High water content	Cucumber	0.01	5	87	10
	ETU	High water content + acidic	Lemon	0.01	5	104	11
	ETU	Dry (cereals)	Oat	0.02	5	103	14
	ETU	High water content + acidic	Raspberry	0.02	5	109	5
	ETU	High sugar and low water content	Honey	0.01	5	103	10
	Matrine	High sugar and low water content	Honey	0.03	5	101	2
	Melamine	High water content	Cucumber	0.01	5	90	13
	Melamine	High water content + acidic	Lemon	0.01	5	91	11
	Melamine	High water content	Mint	0.01	5	93	11
	Melamine	High water content	Apple	0.01	5	97	8
	Melamine	Dry (cereals)	Oat	0.01	5	117	8
	Melamine	High sugar and low water content	Honey	0.02	5	100	8
	Mepiquat	High water content	Cucumber	0.02	5	102	3
	Mepiquat	High water content + acidic	Lemon	0.01	5	104	4
	Mepiquat	High water content	Mint	0.01	5	96	3
	Mepiquat	High water content		0.01	5	104	3
	· · ·	Dry (cereals)	Apple Oat	0.01	5	114	5
	Mepiquat	, , , ,					
	Mepiquat	High sugar and low water content	Honey	0.02	5	99 108	3
	Mepiquat, 4-Hydroxy	High water content	Cucumber	0.01	5		2
	Mepiquat, 4-Hydroxy	High water content + acidic	Lemon	0.01	5	107	4
	Mepiquat, 4-Hydroxy	High water content	Mint	0.01	5	105	2
	Mepiquat, 4-Hydroxy	High water content	Apple	0.01	5	110	2
	Mepiquat, 4-Hydroxy	Dry (cereals)	Oat	0.02	5	112	3
	Mepiquat, 4-Hydroxy	High sugar and low water content	Honey	0.02	5	101	2
	Morpholine	High water content	Cucumber	0.01	5	97	10
	Morpholine	High water content + acidic	Lemon	0.01	5	92	9
	Morpholine	High water content	Apple	0.01	5	84	15
	Morpholine	High water content + acidic	Raspberry	0.01	5	84	18
	Morpholine	High sugar and low water content	Honey	0.02	5	101	4

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level (mg/kg)	n	Recov. %	RSD
	Nereistoxin	High water content	Cucumber	0.01	5	94	8
	Nereistoxin	High water content + acidic	Lemon	0.01	5	99	2
	Nereistoxin	High water content	Mint	0.01	5	90	3
	Nereistoxin	High water content	Apple	0.01	5	101	3
	Nereistoxin	Dry (cereals)	Oat	0.02	5	113	2
	Nereistoxin	High water content + acidic	Raspberry	0.01	5	114	2
	Nereistoxin	High sugar and low water content	Honey	0.02	5	106	2
	Nicotine	High water content	Apple	0.01	5	90	3
	Nicotine	High water content	Lamb's lettuce	0.01	5	95	8
	Nicotine	High water content + acidic	Orange	0.01	5	104	4
	Nicotine	High water content + acidic	Grape	0.01	5	99	2
	Nicotine	Dry (cereals)	Whole Spelt Flour	0.01	5	101	4
	Nicotine	High sugar and low water content	Honey	0.02	5	108	3
	Oxymatrine	High sugar and low water content	Honey	0.02	5	106	6
	Propamocarb	High water content	Cucumber	0.01	5	99	2
	Propamocarb	High water content + acidic	Lemon	0.01	5	84	6
	Propamocarb	High water content	Mint	0.01	5	102	2
		-		0.01	5	102	2
	Propamocarb Propamocarb	High water content Dry (cereals)	Apple Oat	0.01	5	113	3
	·	,		0.02	5	102	3
	Propamocarb	High sugar and low water content	Honey				
	Propamocarb-N-Desmethyl	High water content	Apple	0.01	5	113	3
	Propamocarb-N-Desmethyl	Dry (cereals)	Oat	0.02	5	94	3
	Propamocarb-N-Desmethyl	High water content	Cucumber	0.01	5	106	2
	Propamocarb-N-Desmethyl	High sugar and low water content	Honey	0.02	5	105	3
	Propamocarb-N-Oxide	High water content	Cucumber	0.01	5	102	2
	Propamocarb-N-Oxide	High water content + acidic	Lemon	0.01	5	109	4
	Propamocarb-N-Oxide	High water content	Mint	0.01	5	111	3
	Propamocarb-N-Oxide	High water content	Apple	0.01	5	110	4
	Propamocarb-N-Oxide	High sugar and low water content	Honey	0.02	5	101	3
	PTU	High water content	Cucumber	0.01	5	97	4
	PTU	High water content + acidic	Lemon	0.01	5	100	5
	PTU	Dry (cereals)	Oat	0.02	5	113	6
	PTU	High water content + acidic	Raspberry	0.01	5	115	6
	PTU	High sugar and low water content	Honey	0.02	5	116	3
	Triethanolamine	High water content	Apple	0.01	5	73	15
	Triethanolamine	High water content + acidic	Raspberry	0.01	5	106	4
	Trimethylsulfonium	High water content	Cucumber	0.01	5	119	3
	Trimethylsulfonium	High water content + acidic	Lemon	0.01	5	110	2
	Trimethylsulfonium	High water content	Mint	0.01	5	116	3
	Trimethylsulfonium	High water content	Apple	0.01	5	119	2
	Trimethylsulfonium	High sugar and low water content	Honey	0.02	5	103	4
M4.2	Diquat**	Dry (oilseeds)**	Sesame	0.05	5	105	7
(extraction mth	Diquat	Dry (oilseeds)	Chia seeds	0.02	5	94	12
for PQ/DQ)	Diquat	Dry (oilseeds)	Chia seeds	0.1	5	101	8
	Paraquat**	Dry (oilseeds)**	Sesame	0.02	5	100	10
	Paraquat	Dry (oilseeds)	Chia seeds	0.02	5	95	10
	Paraquat	Dry (oilseeds)	Chia seeds	0.1	5	107	5
M5	See un der http://www.crl-pest	ticides.eu/library/docs/srm/meth_Chlor	mequatMepiquat_Crl	Srm.pdf			
MG	Kasugamycin	High water content	Apple	0.01	5	98	4
M6	Streptomycin	High water content	Apple	0.01	10	106	9
	Morpholine	High water content	Apple	0.1	5	94	3
M7	Morpholine	High water content	Mango	0.1	5	95	2
	Morpholine	High water content + acidic	Mandarin	0.1	5	95	7

				Spiking		Mean	
Method	Analyte	Commodity Group	Matrix	Level	n	Recov.	RSD
				(mg/kg)		%	
	Diethanolamine	High water content	Apple	0.1	5	103	3
	Diethanolamine	High water content	Mango	0.1	5	107	1
	Diethanolamine	High water content + acidic	Mandarin	0.1	5	103	1
	Triethanolamine	High water content	Apple	0.1	5	108	6
	Triethanolamine	High water content	Mango	0.1	5	118	3
	Triethanolamine	High water content + acidic	Mandarin	0.1	5	112	4
	1,2,4-Triazole	High water content	Cucumber	0.1	5	85	12
	1,2,4-Triazole	High water content	Potatoes	0.01	5	100	8
	1,2,4-Triazole	High acid content	Orange	0.1	5	94	20
	1,2,4-Triazole	High acid content	Grapes	0.01	5	90	10
	1,2,4-Triazole	Dry (cereals)	Rice	0.2	5	86	3
	1,2,4-Triazole	Dry (cereals)	Barley	0.1	5	104	6
	1,2,4-Triazole	Fatty, wet	Avocado	0.01	5	94	10
	Triazole-acetic acid	High water content	Cucumber	0.01	5	100	2
	Triazole-acetic acid	High water content	Potatoes	0.01	5	96	6
	Triazole-acetic acid	High acid content	Orange	0.01	5	104	9
	Triazole-acetic acid	High acid content	Grapes	0.01	5	95	4
	Triazole-acetic acid	Dry (cereals)	Rice	0.02	5	74	5
	Triazole-acetic acid	Dry (cereals)	Barley	0.01	5	109	5
	Triazole-acetic acid	Fatty, wet	Avocado	0.01	5	97	2
M8	Triazole-alanine	High water content	Cucumber	0.01	5	100	19
	Triazole-alanine	High water content	Potatoes	0.01	5	102	18
	Triazole-alanine	High acid content	Orange	0.01	5	98	5
	Triazole-alanine	High acid content	Grapes	0.01	5	95	11
	Triazole-alanine	Dry (cereals)	Rice	0.02	5	88	4
	Triazole-alanine	Dry (cereals)	Barley	0.02	5	119	9
	Triazole-alanine	Fatty, wet	Avocado	0.02	5	91	13
	Triazole-lactic acid	High water content	Cucumber	0.01	5	107	3
	Triazole-lactic acid	High water content	Potatoes	0.01	5	107	6
	Triazole-lactic acid	High acid content	-	0.01	5	111	12
		High acid content	Orange	0.01	5	100	5
	Triazole-lactic acid	0	Grapes				
	Triazole-lactic acid	Dry (cereals)	Rice	0.02	5	71	4
	Triazole-lactic acid	Dry (cereals)	Barley	0.02	5	99	4
	Triazole-lactic acid	Fatty, wet	Avocado	0.01	5	97	4
		esticides.eu/userfiles/file/EurlSRM/EurlS			_	_	
	Difluoroacetic acid	High water content	Apple	0.01	5	94	7
	Difluoroacetic acid	Fatty, wet (oily fruits)	Avocado	0.02	5	103	8
	Difluoroacetic acid	High water content	Cucumber	0.01	5	70	2
	Difluoroacetic acid	Dry (cereals)	Flour	0.02	5	77	9
	Difluoroacetic acid	High acid content	Grapes	0.01	5	80	5
	Difluoroacetic acid	High acid content	Grapes	0.01	5	106	15
	Difluoroacetic acid	High acid content	Orange	0.01	5	109	11
M9	Difluoroacetic acid	Dry (cereals)	Rice	0.02	5	80	3
IVIS	Trifluoroacetic acid	High water content	Apple	0.01	5	93	6
	Trifluoroacetic acid	Fatty, wet (oily fruits)	Avocado	0.04	5	77	4
	Trifluoroacetic acid	Dry (cereals)	Flour	0.04	5	84	6
	Trifluoroacetic acid	High acid content	Gooseberry	0.02	5	128	11
	Trifluoroacetic acid	High acid content	Grapes	0.01	5	87	14
	Trifluoroacetic acid	High acid content	Orange	0.01	5	107	3
	Trifluoroacetic acid	Dry (cereals)	Rice	0.04	5	72	4
	Trifluoroacetic acid	High water content	Tomato	0.02	5	76	15
	Triazole-acetic acid	High sugar and low water content	Honey	0.02	5	101	5
	Triazole-lactic acid	High sugar and low water content	Honey	0.02	5	104	6.3
M10	TTTIAZUIE-IACTIC ACTU	IDISH SUSAL AND IOM WATER COME.					

Method	Analyte	Commodity Group	Matrix	Spiking Level (mg/kg)	n	Mean Recov. %	RSD
	AMPA	High water content	Cucumber	0.02	5	97	5.9
	Ethephon	High water content	Cucumber	0.02	5	90	5.2
	Fosetyl	High water content	Cucumber	0.02	5	101	3.1
	Glufosinat	High water content	Cucumber	0.02	5	99	4.6
	Glyphosat	High water content	Cucumber	0.02	5	96	2.3
	HEPA	High water content	Cucumber	0.02	5	101	14.5
M11	MPPA	High water content	Cucumber	0.02	5	103	4.0
IVITT	N-Acetyl-Glufosinat	High water content	Cucumber	0.02	5	103	3.0
	N-Acetyl-Glyphosat	High water content	Cucumber	0.02	5	104	2.7
	Bromide (inorg.)	High water content + acidic	Lemon	10	5	110	11.3
	Chlorate	High water content + acidic	Lemon	0.06	5	96	2.7
	Perchlorate	High water content + acidic	Lemon	0.02	5	97	2.0
	Phosphonic acid	High water content + acidic	Lemon	0.1	5	100	4.1
	Trifluoroacetic acid	High water content + acidic	Lemon	0.05	5	100	1.5

Table 43: Validation data deriving from two QuPPe interlaboratory validation studies organized by the EURL-SRM, Round 1 and 2.

		Solvent + IL-			cory validation stud Matrix Matched			Matrix + IL-IS C		
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)		No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
				Cyro	mazine					
	0.01	102	4	7	89	5	9	100	5	9
Potatoes	0.05	115	4	8	91	4	9	102	3	9
	0.2	100	3	9	92	2	9	102	3	9
	0.01	101	4	8	96	6	10	103	4	10
Grapes	0.05	99	3	8	96	3	9	103	3	10
	0.2	97	2	8	96	3	10	102	2	10
	0.01	119	7	6	85	13	7	102	9	7
Rye flour	0.05	104	6	8	85	5	9	100	7	9
	0.2	97	4	8	86	4	9	98	3	9
	0.01	100	4	6	92	4	8	104	4	7
Avocados	0.05	102	2	9	93	3	10	102	3	9
	0.2	99	2	8	86	4	11	102	2	10
				Dami	nozide					
	0.01	107	2	3	100	6	8	89	4	8
Potatoes	0.05	99	3	7	97	4	10	97	4	9
	0.2	93	4	7	99	3	10	94	4	10
	0.01	102	6	4	97	5	10	97	7	8
Grapes	0.05	97	2	8	97	3	11	97	4	11
	0.2	97	2	8	97	3	11	97	4	11
	0.01	107	11	5	105	6	5	97	5	5
Rye flour	0.05	90	5	7	113	5	7	106	4	8
	0.2	89	4	7	109	3	7	101	4	8
	0.01	110	2	5	100	7	7	95	6	6
Avocados	0.05	99	4	8	104	4	10	99	3	9
	0.2	95	2	8	99	3	10	99	2	9
				Chlori	mequat					
	0.01	99	3	9	98	4	10	101	3	10
Potatoes	0.05	99	3	9	98	3	10	102	3	10
	0.2	105	4	10	101	3	10	102	4	10
	0.01	97	3	10	99	4	10	104	3	10
Grapes	0.05	99	3	10	95	2	10	101	2	11
	0.2	101	2	10	97	2	11	103	2	11
Rye flour	0.01	109	5	9	105	7	10	102	4	10

		Solvent + IL-	IS Calibra	tion	Matrix Matche	d Calibrat	ion	Matrix + IL-IS C	alibratio	on
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)	(± %)	No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
	0.05	103	5	9	101	4	10	106	5	10
	0.2	102	3	9	103	3	10	104	3	10
	0.01	97	3	10	97	4	10	103	3	10
Avocados	0.05	99	3	9	96	3	10	102	3	10
	0.2	101	2	10	91	3	11	103	2	10
				Trim	esium					
	0.01	87	5	9	98	4	10	104	4	10
Potatoes	0.05	92	3	7	97	4	10	104	4	10
	0.2	93	2	8	97	3	10	101	3	10
	0.01	93	3	10	95	3	11	101	2	11
Grapes	0.05	96	2	9	95	2	10	100	2	11
	0.2	97	2	9	95	3	11	102	2	11
	0.01	126	6	9	102	7	10	107	5	10
Rye flour	0.05	122	5	9	100	4	10	106	4	10
•	0.2	120	4	9	101	3	10	101	4	10
	0.01	93	4	9	89	4	10	98	4	10
Avocados	0.05	92	3	9	91	4	10	101	3	10
	0.2	93	3	10	88	4	10	99	3	9
				Nere	istoxin					
	0.01	128	6	5	91	8	6	105	9	6
Potatoes	0.05	110	7	5	91	5	8	98	5	7
	0.2	111	3	8	94	3	9	100	3	9
	0.01	109	7	4	94	7	9	97	6	9
Grapes	0.05	107	5	8	96	5	10	100	6	11
	0.2	115	3	9	94	4	11	100	4	11
	0.01	184	8	6	93	9	7	99	7	7
Rye flour	0.05	137	6	8	89	7	9	104	6	9
,	0.2	131	4	8	90	4	9	102	5	9
	0.01	100	6	3	84	8	5	102	7	5
Avocados	0.05	108	2	7	84	4	7	102	3	8
	0.2	108	3	7	80	4	9	106	5	9
				Mela	amine					
	0.01	121	4	4	78	6	7	103	7	7
Potatoes	0.05	105	4	6	73	5	9	101	5	9
	0.2	97	3	7	81	4	9	104	5	9
	0.01	102	6	5	91	7	7	102	7	8
Grapes	0.05	95	5	8	94	3	9	101	4	10
	0.2	99	3	9	96	4	10	102	2	10
	0.01	196	5	5	71	7	6	148	13	7
Rye flour	0.05	109	5	7	63	14	8	115	8	8
	0.2	106	5	8	60	7	9	105	5	9
	0.01	120	3	4	88	6	5	109	4	4
Avocados	0.05	102	6	7	90	4	8	101	3	9
	0.2	96	5	9	82	4	10	102	4	9
					nlorate					
	0.01							99	9.3	11
Carrot	0.02							99	11.4	11
	0.2							96	10.5	10
	0.01							105	6.4	11
Lemon	0.02							104	7.4	11
	0.2							102	5.4	12
	0.01							100	8.6	11
Rye flour	0.01							102	8.7	12
,	0.02							101	9.8	14
Avocado	0.01							104	11.5	10
AVUCAUU	0.01							104	11.5	10

		Solvent + IL-	IS Calibra	tion	Matrix Matche	d Calibrat	tion	Matrix + IL-IS C	alibratio	on
	Level	Mean Recovery	RSD		Mean Recovery	RSD	No.	Mean Recovery	RSD	No.
Matrix	(mg/kg)	(%)	(± %)	No. Labs	(%)	(± %)	Labs	(%)	(± %)	Labs
	0.02							105	10.2	11
	0.2							102	8.1	11
				Chl	orate					
	0.01							105	11.6	12
Carrot	0.02							103	8.5	11
	0.2							100	4.9	10
	0.01							99	13.4	12
Lemon	0.02							104	18.1	11
	0.2							100	5.2	12
	0.01							108	13.3	12
Rye flour	0.02							105	15.9	14
	0.2							101	6.5	13
	0.01							99	4.1	8
Avocado	0.02							102	5.5	8
	0.2							106	8.7	11
				Phosph	onic acid					
	0.1							100	18.8	6
Carrot	0.2							106	7.2	7
	2							108	14.3	6
	0.1							104	8.0	5
Lemon	0.2							101	10.1	5
	2							98	8.7	10
	0.2							104	20.3	5
Rye flour	0.4							103	18.1	7
	4							105	14.1	11
	0.1							99	10.2	7
Avocado	0.2							105	12.1	8
	2							100	18.8	6
				Bro	mide					
	5				103	11.2	7			
Carrot	10				106	8.7	8			
	100				115	17.0	7			
	5				99	10.5	10			
Lemon	10				94	18.9	10			
	100				100	10.6	10			
	10				82	10.9	9			
Rye flour	20				83	10.3	10			
	200				85	34.8	11			
	5				102	15.9	10			
Avocado	10				102	10.5	11			
	100				103	11.2	7			

8. References

Anastassiades, M and Mack, D (2008); New Developments in the Analysis of Pesticides Typically not Covered by Multiresidue Methods; European Pesticide Residue Workshop, EPRW 2008, Berlin, oral presentation O1, Book of Abstracts

Kolberg DI, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, Mol HG. Anal Bioanal Chem. 404(8):2465-74 (2012); Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses

Alder L. and Startin J. R. (2005); Determination of Chlormequat and Mepiquat in Foods by Liquid Chromatography/Mass Spectrometry or Liquid Chromatography/Tandem Mass Spectrometry: Interlaboratory Study; Journal of AOAC International Vol. 88, No. 6: 1762-1776

Vahl, M. et al. (1998); Analysis of Chlormequat residues in grain using liquid chromatography-mass spectrometry (LC-MS/MS); Fresenius J Anal Chem 361:817-820

9. ANNEX

Table 44: Conversion factors between typical purchased standards and target analytes (3.20).

		sea standaras and target analytes (3.2)	MW	Conv. Factor	
Compound	MW [g/mol]	Compound as sold	[g/mol]	(CF)	Inverse CF
Bialaphos	323.3	Bialaphos-sodium	345.3	0.94	1.07
Bromate (anion)	127.9	Potassium bromate	167.0	0.77	1.31
Bromide (anion)	79.9	Potassium bromide	119.0	0.67	1.49
Chlorate (anion)	83.5	Chlorate-sodium	106.4	0.78	1.27
Chlormequat (cation)*	122.6	Chlormequat-chloride*	158.1	0.78	1.29
Chlormequat-D ₄ (cation)	126.6	Chlormequat-D ₄ -chloride	162.1	0.78	1.28
Difenzoquat (cation)	249.3	Difenzoquat-methylsulfate	360.4	0.69	1.45
Difluoroacetic acid	94.0	Sodium difluoroacetate	118.0	0.8	1.26
Difluoroacetic acid-13C ₂	96.0	Sodium difluoroacetate- ¹³ C ₂	120.0	0.80	1.25
Dihydrostreptomycin	583.6	Dihydrostreptomycin-sesquisulfate	730.7	0.80	1.25
Diquat (dication)	184.2	Diquat-dibromide-monohydrate	362.1	0.51	1.97
Diquat-D ₄ (dication)****	188.2	Diquat-D₄-dibromide-monohydrate	366.1	<mark>0.51</mark>	1.95
Diquat-D ₈	<mark>188.2</mark>	Diquat-D ₈ -dibromide	352.1	<mark>0.54</mark>	1.87
Fosetyl	110.05x3 = 330.14**	Fosetyl-Al	354.10	0.932	1.07
Fosetyl-D ₅	115.08x3=345.23**	Fosetyl-Al D ₁₅	369.19	0.935	1.07
Fosetyl-D ₅	115.08	Fosetyl-D ₅ -sodium	137.0	0.84	1.19
Glufosinate	181.1	Glufosinate-ammonium	198.2	0.91	1.09
Glufosinate-D₃	184.1	Glufosinate-D ₃ -hydrochloride	220.6	0.83	1.20
Glufosinate-D ₃	184.1	Glufosinate-D ₃ -ammonium hydrate	243.2	0.76	1.32
Kasugamycin	379.4	Kasugamycin-hydrochloride-monohydrate	433.8	0.87	1.14
Mepiquat (cation)*	114.2	Mepiquat-chloride*	149.7	0.76	1.31
Mepiquat-D₃ (cation)	117.2	Mepiquat-D₃-iodide	244.1	0.48	2.08
Mepiquat-4-hydroxy	130.2	Mepiquat-4-hydroxy-chloride	165.7	0.79	1.27
N,N'-Dimethylhydrazine	60.1	Dimethylhydrazine hydrochloride	96.6	0.59	1.71
N,N'-Dimethylhydrazine-D ₆	66.1	Dimethylhydrazine-D ₆ —hydrochloride	102.6	0.64	1.55
N-Acetyl-Glufosinate	223.2	N-Acetyl-Glufosinate-disodium	267.2	0.84	1.20
N-Acetyl-Glufosinate-D₃	226.2	N-Acetyl-Glufosinate-D ₃ -disodium	270.2	0.84	1.19
Nereistoxin	149.3	Nereistoxin-oxalate	239.3	0.62	1.60
Nereistoxin-D ₆	155.3	Nereistoxin-D ₆ -oxalate	245.3	0.63	1.58
Nicotine	162.2	Nicotine hemisulfate	422.5***	0.77	1.30
Paraquat (dication)	186.3	Paraquat-dichloride	257.2	0.72	1.38
Paraquat-D ₆ (dication)	192.3	Paraquat-D ₆ -diiodide	446.1	0.43	2.32
Paraquat-D ₈	192.3	Paraquat-D ₈ -dichloride	<mark>265.2</mark>	<mark>0.73</mark>	<mark>1.16</mark>
Propamocarb-N-oxide	204.3	Propamocarb-N-oxide hydrochloride	240.7	0.85	1.17
Streptomycin	581.6	Streptomycin-sesquisulfate	728.7	0.80	1.25
Trifluoroacetic acid	113.0	Sodium trifluoroacetate	136.0	<mark>0.83</mark>	1.20
Trifluoroacetic acid -13C ₂	<mark>115.0</mark>	Sodium trifluoroacetate-13C2	138.0	0.83	<mark>1.20</mark>
Trimethylsulfonium (cation)	77.2	Trimethylsulfonium-iodide	204.1	0.38	2.64
Trimethylsulfonium-D ₉ (cation)	86.2	Trimethylsulfonium-D ₉ -iodide	213.1	0.40	2.47
* *	5	now expressed as the respective chloric		•	

^{*} Attention: The EU – Maximum Residue Levels are now expressed as the respective chloride salts. **Thus no conversion of the chloride to the cation is needed.**

^{**} Taking into account that 1 mol fosetyl-Al (MW 354.10) contains 3 mols of fosetyl anion (MW 109.04x3=327,12) leading to 3 mols free fosetyl acid (MW 110.05x3=330,14). For the ILIS the following numbers apply 1 mol fosetyl-Al D_{15} (MW 369.19) contains 3 mols of fosetyl D_5 anion (MW 114.07x3=342.21) leading to 3 mols fosetyl D_5 acid (MW 115.08*3=345.23)

^{***} MW refers to the following formula $(C_{10}H_{14}N_2)_2 \cdot H_2SO_4$ which entails two nicotine molecules

^{****}to be avoided due to stability problems

Table 45: Exemplary concentrations of pesticide stock and working solutions (3.20 and 3.21), (solvent proposals also apply to IL-IS, see 3.23, 3.24, 3.25). Prefereably use plastic vials (e.g. PP) as many of the compounds tend to interact with glass surfaces.

Compound	Stock Solution (exemplary)		Working Solutions including	mixtures (exemplar
Jonipounu	Solvent used to prepare	[mg/mL]	Solvent used to prepare	[µg/mL]
Aminocyclopyrachlor	MeOH	1	МеОН	10 / 1 / 0.1
mitrole	МеОН	1	MeOH	10 / 1 / 0.1
MPA	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
romate	Water/MeOH (50:50)	1	MeOH	10/1/0.1/0.01
romide	МеОН	1	MeOH	10/1/0.1/0.01
hlorate	10 % ACN in water	1	MeOH	10/1/0.1/0.01
hloridazon-desphenyl	МеОН	1	MeOH	10 / 1 / 0.1
hlormequat	MeOH	1	MeOH	10 / 1 / 0.1
yanuric acid	MeOH	1	10 % ACN in water	10/1/0.1
yromazine	MeOH	1	MeOH	10 / 1 / 0.1
aminozide	MeOH	1	MeOH	10/1/0.1
iethanolamine	ACN	1	MeOH	10 / 1 / 0.1
ifenzoquat	ACN	1	MeOH	10 / 1 / 0.1
ifluoroacetic acid	ACN with 5% water	1	ACN with 5% water	10 / 1/ 0.1
iquat**	10 % ACN in water	1	10 % ACN in water	10/1/0.1
thephon	10 % ACN in water + 0,1 % HCl	1	10 % ACN in water +0,1 % HCl	10 / 1 / 0.1
TU	MeOH	1	MeOH	10 / 1 / 0.1
osetyl	10 % ACN in water	0.1	10 % ACN in water	10 / 1 / 0.1
lufosinate	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
lyphosate*	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
EPA	10 % ACN in water	1	10 % ACN in water	10/1/0.1
asugamycin	MeOH	1	MeOH	10 / 1 / 0.1
latrine	ACN	1	ACN	10/1/0.1
Taleic Hydrazide	MeOH	1	10 % ACN in water	10 / 1 / 0.1
Melamine		1		
	MeOH:water (90:10)		MeOH	10/1/0.1
lepiquat	MeOH	1	MeOH	10 / 1 / 0.1
1epiquat-4-hydroxy	MeOH	1	MeOH	10/1/0.1
1orpholine	MeOH	1	MeOH	10/1/0.1
1PPA	10 % ACN in water	1	10 % ACN in water	10/1/0.1
,N-Dimethylhydrazine	MeOH	1	MeOH	10 / 1 / 0.1
-Acetyl- AMPA	10 % ACN in water	1	10 % ACN in water	10/1/0.1
-Acetyl-glufosinate	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
-Acetyl-glyphosate	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
ereistoxin	MeOH / water (3:1)	1	MeOH	10 / 1 / 0.1
licotine*	ACN	1	ACN	1/0.1
exymatrine	ACN	1	ACN	10 / 1 / 0.1
araquat**	10 % ACN in water	1	10 % ACN in water	10 / 1 / 0.1
erchlorate	10 % ACN in water	1	MeOH	10 / 1 / 0.1 / 0.01
hosphonic acid*	10 % ACN in water	1	ACN***	10/1/0.1/0.01
ropamocarb	ACN	1	MeOH	10 / 1 / 0.1
ropamocarb-N-desmethyl	ACN:Acetone (1 mL acetone to initially dissolve)	1	MeOH	10 / 1 / 0.1
ropamocarb-N-oxide	ACN	1	MeOH	10 / 1 / 0.1
TU	MeOH	1	MeOH	10/1/0.1
reptomycin*	Water / MeOH (1:1)	0,5	MeOH	10 / 1 / 0.1
riazole	MeOH	1	MeOH	10 / 1 / 0.1
riazole-lactic acid	MeOH	1	MeOH	10 / 1 / 0.1
riazole-acetic acid	MeOH	1	MeOH	10/1/0.1
riazole-alanine	MeOH/Water (1:3)	1	MeOH	10 / 1 / 0.1
riethanolamine	MeOH	1	MeOH	10 / 1 / 0.1
rifluoroacetic acid	ACN with 5% water	1	ACN with 5% water	10 / 1/ 0.1

^{*} Use plastic vessels and stoppers for compounds that tend to interact with glass surfaces

^{**} Use plastic vials and protect solutions from light exposure

^{***} Pure water ($^{18}O-H_2O$ for the IL-IS) is also suitable for the working solution. 10% ACN will reduce growth of microorganisms MeOH: Methanol; ACN: Acetonitrile; FA: Formic acid

 Table 46: Exemplary providers of isotopically labelled internal standards 3.22.

Isotope labelled c	omnound	Source	Article-No.	Conc.	Amount	Prices in (€-cent (see di	
isotope labelled c		Jource	Alticic-140.	(μg/mL)	per unit	1 unit	2 μg*	0.1 μg**
	¹⁵ N	1	XA10240100ME	100	1.1 mL	165€	300 c	15 c
	¹⁵ N, ¹³ C	1	XA10240110AL	100	1.1 mL	332€	604 c	30 c
Amitrole	¹⁵ N ₂ , ¹³ C ₂	7	A633382		10 mg	1.500 €	30 c	1.5 c
		14	LBS9AZ3L3293	1000	1.1 mL	1.380 €	251 c	12.5 c
	¹⁵ N ₄ , ¹³ C ₂	8	C4313		10 mg			
		1	CIL-CDNLM-6786-1.2	100	1.2 mL	464 €	773 c	39 c
	¹³ C, ¹⁵ N, D ₂	5	CDNLM-6786-1.2	100	1.2 mL	464 €	773 c	39 c
лмрл		10	CDNLM-6786-1.2	100	1.2 mL	465 €	775 c	39 c
AIVIFA		7	A617342		10 mg	1.690 €	34 c	1.7 c
	¹³ C, ¹⁵ N	1	XA10205100WA	100	1.1 mL	332 €	604 c	30 c
		14	LBS9AZ3L1603	1000	1.1 mL	1.380 €	251 c	12.5 c
Bromate-¹8O₃		1	CIL-OLM-8283-180-1.2	100	1.2 mL	406 €	677 c	34 c
Chlorata 180		7	C292762	No indication	1 mL	4.300 €		
Ciliorate03		12***	-	200	5 mL	250 €	50 c	2.5 c
		13	8399.4-10MG		10 mg	1.380 €	28 c	1.4 c
		14	LBS9G3L3294	1000	1.1 mL	1.380 €	251 c	12.5 c
Chloridazon-desp	henyl- ¹⁵ N ₂	3	679027		5 mg	790 €	31.6 c	1.6 c
		11	sc-218161		1 mg	326€	65.2 c	3.3 c
		18	20273		10 mg	810€	16.2 c	0.8 c
Chloridazon-meth	yl-desphenyl-D3	18	20229		10 mg	695 €	13.9 с	0.7 c
		1	X 11340100DO	100	10 mL	286 €	57 c	2.9 c
		1	XA11340100DO	100	1.1 mL	73 €	133 с	6.6 c
	1,1,2,2-D ₄ (chloride)	6	D3386		10 mg	756 €	15 c	0.8 c
Chlormequat	1,1,2,2-D4 (chloride)	1	CA11340100		5 mg	389€	16 c	0.8 c
		9	00291		5 mg	485 €	19 c	1.0 c
Sromate- $^{18}O_3$ Chlorate- $^{18}O_3$ Chloridazon-desphenyl- $^{15}N_3$ Chloridazon-methyl-desphenyl- $^{13}C_3$ Cyanuric acid $^{18}O_3$ $^{13}C_3,^{15}N_3$ Cyromazine- $^{13}O_4$ Daminozide $^{18}O_4$ Diethanolamine $^{18}O_4$ Da		14	CRM9G3L1612	1000	1.1 mL	320€	58 c	2.9 c
	D ₉ (chloride)	3	673151		5 mg	320€	13 c	0.6 c
		7	C987717		5 mg	164€	6.6 c	0.3 c
	¹³ C ₃	9	32679		10 mg	470 €	9.4 c	0.5 c
Cyanuric acid		14	LBS9G3L1609	1000	1.1 mL	200€	36 c	1.8 c
	¹⁸ O ₃	3	673141		10 mg	299 €	6.0 c	0.3 c
	¹³ C ₃ , ¹⁵ N ₃	15	S-O-C695-A-1.2ML	100	1.2 mL	378 €	630 c	31.4 c
		1	DRE-C11920010		10 mg	366 €	7.3 c	0.4 c
		1	XA11920010EA	100	1.1 mL	118€	215 c	11 c
Cyromazine-D ₄		7	C989302		10 mg	1.255€	25.1 c	1.3 c
		9	93101		5 mg	164€	6.6 c	0.3 c
		14	LBS9G3L1613	1000	1.1 mL	170€	31 c	1.5 c
	D.	1	XA11960100AL	100	1.1 mL	87 €	158 c	7.9 c
Daminozida	D 6	7	D416717		25 mg	647 €	5.2 c	0.3 c
Daminozide	D	14	LBS9G3L2291	1000	1.1 mL	320€	58 c	2.9 c
	U 4	6	D45297		50 mg	441€	1.8 c	0.09 c
	D.	4	D-5307		100 mg	432 €	0.9 c	0.04 c
Diothanolamina	104	14	LBS9B3L3152	1000	1.1 mL	180 €	33 c	1.6 c
Dietilanolamine	D.	7	D441902		100 mg	1.100 €	2.2 c	0.1 c
	D8	14	LBS9B3L3095	1000	1.1 mL	180 €	33 c	1.6 c
Difluoroassis	¹³ C (Sodium salt)	2	friendly donation					
Difluoroacetic acid	13C. (Sodium solt)	7	S655022		1 mg	249 €	50 c	2.5 c
acıu	¹³ C ₂ (Sodium salt)	1	TRC-S655022-25MG		25 mg	4.084€	33 c	1.7 c
Dihydrostrepto-	sesquisulfate-hydrate	1	C 12635300		100 mg	29€	0.1 c	0.003 c
mycin (native)	sulfate	1	EPD1954000		25 mg	120€	1.0 c	0.048 c
		4	D-7990		10 mg	220€	4.4 c	0.2 c
Diamet D. 311	tala (alta mistra - D.)	1	TRC-D492901-50MG		50 mg	1.115 €	4.5 c	0.05 c
uquat-ט ₈ dibrom	ide (dipyridine-D ₈)	3	690175	100	1 mL	455 €	910 c	46 c

				Conc.	Amount	Prices in	€-cent (see dicla	imer)
Isotope labelled co	ompound	Source	Article-No.	(μg/mL)	per unit	1 unit	2 μg*	0.1 μg**
		1	DRE-CA12960010		50 mg	315 €	1.3 c	0.06-с
		1	XA12960010DO	100	1.1 mL	82 €	149 c	7.5 c
		4	D-3932		10 mg	144 €	2.9 c	0.1 c
D' (D III		6	D17071		50 mg	840 €	3.4 €	0.2 c
	ide (ethylene-D ₄)*	7	D492902		5 mg	117 €	4.7 €	0.2 c
*Not recommend	ed due to stability problems	9	3627		5 mg	152 €	6.1 c	0.3 с
		10	B130022-10		10 mg	1.100 €	22 c	1.1 c
		11	sc-218246		5 mg	234 €	9.4 €	0.5 с
		14	LBS9AZ3L2482	1000	1.1 mL	240 €	44 c	2.2 c
			XA13230100AC	100	1.1 mL	127€	231 c	12 c
		1	DRE-C13230100		10 mg	1.200€	24 c	1.2 c
	D_4	6	D8328		5 mg	1.400 €	56 c	2.8 c
Ethephon		7	C366177		10 mg	1.120 €	22 c	1.1 c
		14	LBS9BK3L1600	1000	1.1 mL	250 €	45.5 c	2.3 c
	¹³ C ₂	7	C366178		0.25 mg	210€	170 c	8 c
		1	C 13330100		50 mg	316 €	1.3 c	0.06 c
		1	XA13330100AC	100	1.1 mL	127 €	231 c	12 c
Ethylenethiourea-	·D ₄ (ETU-D ₄)	6	D1965		100 mg	733 €	1.5 c	0.07 c
,	,	7	1367002		10 mg	98€	2.0 c	0.1 c
		14	LBS9G3L2293	1000	1.1 mL	150 €	27 c	1.4 c
		1	CA13940010		10 mg	380 €	7.6 c	0.4 c
Fosetyl	D ₁₅ (Aluminium salt)	14	LBS2AZ3L1607	100	1.1 mL	178 €	324 c	16.2 c
	D₅ (Sodium salt)	8	C5607	100	10 mg	825 €	17 c	0.8 c
	- 5 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Friendly donation			0_0		
	D ₃	3	680888	100	1 mL	380 €	760 c	38 c
Glufosinate	J.3	14	CRM9AZ3L1604	1000	1.1 mL	1.380 €	251 c	12.5 c
diarosinate		3	681220	1000	1.1 IIIL	380 €	760 c	38 c
	D ₃ -Chloride	7	G596952	100			38 c	1.9 c
		1	XA14050100WA	100	10 mg 1.1 mL	1.900 €		28 c
		1	CNLM-4666-1.2	100	1.1 mL	304 €	553 c 602 c	30 c
		5						
		1	CNLM-4666-10X-1.2	1000	1.2 mL	1.170 €	196 c	9.8 c
		1	CIL-CNLM-4666-1.2	100	1.2 mL	344 €	573 c	29 c
	¹³ C ₂ , ¹⁵ N	6	CN10570		5 mg	1.990€	80 c	4.0 c
		/	G765002		10 mg	1.048 €	21 c	1.0 c
Glyphosate		11	sc-280758	200	1 mg	262 €	52 c	2.6 c
		14	CRM17AZ3L1602	200	1.1 mL	470 €	427 c	21.4 c
		15	S-FCN1104S-1.2ML	100	1.2 mL	393 €	655 c	32.7 c
	12.0 15	17	R009984		10 mg	2.165 €	43.4 c	2.2 c
	¹³ C, ¹⁵ N	9	90479		5 mg	536 €	21 c	1.1 c
	13C	7	G765001		5 mg	210 €	8.4 c	0.4 c
		9	606502		10 mg	785 €	16 c	0.9 c
		1	CA13230200		10 mg	256 €	5.1 c	0.3 c
		7	H939652		25 mg	1.125 €	9.0 c	0.5 c
HEPA (Hydroxy-Et	hephon)-D ₄	2	Friendly donation	1.00		22.2	200	
		3	676639	100	1 mL	99€	200 c	10 c
		14	LBS9AZ3L1601	1000	1.1 mL	580 €	105.5 c	5.3 c
Matrine-D ₃		7	M197872		10 mg	820 €	16 c	0.8 c
		1	C 14730100		10 mg	235 €	4.7 c	0.2 c
	D ₂	3	673799		10 mg	199€	20c (10μg)	1 c (0.5 μg)
Maleic hydrazide		7	M124502		5 mg	141 €	5.6 c	0.3 c
		14	LBS9G3L1608	1000	1.1 mL	270 €	49 c	2.5 c
	¹³ C ₄	9	04311-10MG		10 mg	228€	4.6 c	0.2 c
Melamine	¹³ C ₃ , ¹⁵ N ₃	1	CIL-CNLM-8150-10X-1.2	1000	1.2 mL	1.300 €	260 c	13 c
	¹⁵ N ₃	9	80038		10 mg	647 €	13	0.7 c

N-Acetyl-glypho- ate Nereistoxin-oxal Nicotine-D ₄ Oxymatrine-D3 VIPPA-D3	compound	Source	Article-No.	Conc.	Amount	Prices in	€-cent (see di	claimer)
isotope iabelled t	ompound	Source	Article-No.	(μg/mL)	per unit	1 unit	2 μg*	0.1 μg**
		3	673055		10 mg	289 €	5.8 c	0.3 c
		14	LBS9G3L1616	1000	1.1 mL	270 €	49 c	2.5 c
	12.0	3	679703		10 mg	480 €	9.6 c	0.5 c
	¹³ C ₃	1	B-MYC8020-1.2	100	1.2 mL	528	8.8 €	440 c c
		6	D14539		50 mg	1.350 €	5.4 c	0.3 c
	D ₁₆ –chloride	9	52485		5 mg	214€	8.6 c	0.4 c
		14	CRM9G3L2292	1000	1.1 mL	300 €	54.5 c	2.7 c
		1	X 14880100DO	100	10 mL	378 €	76 c	3.8 c
Mepiquat		1	XA14880100DO	100	1.1 mL	68€	124 c	6.2 c
	D ₃ (methyl-D ₃) -iodide	9	78278		10 mg	379 €	7.6 c	0.4 c
		3	677008		10 mg	320 €	6.4 c	0.3 c
		14	LBS9G3L1531	1000	1.1 mL	290 €	53 c	2.6 c
		4	D-1895/0.5		500 mg	468 €	0.94 c (10μg)	0.05c (0.5μg)
Mornholine	D ₈	7	M723728		25 mg	131 €	1.1 c	0.05 c
phomic		14	LBS9G3L3094	1000	1.1 mL	200 €	36 c	1.8 c
	13C ₄	7	M723727	1000	1 mg	131 €	26 c	1.3 c
	D ₃ (methyl-D ₃)	2	Friendly donation		- 1116	131 0	200	1.50
	23 (memyr-23)	7	A178237		5 mg	141 €	5.6 c	0.3 c
		9	05567		5 mg	97.50 €	3.9 c	0.3 c
N-Acetyl-		3	680264	100	1 mL	280 €	560 c	28 c
glufosinate	D ₃ (Acetylamino-D ₃)	14	LBS9AZ3L1606	1000	1.1 mL	180 €	33 c	1.6 c
		18	20053	1000	20 mg	240 €	2.4 c	0.12 c
			sc-479498				9.2 c	
		11 7	A178248		5 mg	230 €		0.46 c
N 6 4 1 1	D ₃ (methyl-D ₃)	-		1000	25 mg	1.153 €	9.2 c	0.5 c
		14	LBS9AZ3L2868	1000	1.1 mL	580 €	105.5 c	5.3 c
sate	¹³ C ₂ , ¹⁵ N	7	A178247		10 mg	1.326 €	26.5 c	1.3 c
		17	R052712		10 mg	2.982 €	59.6 c	3.0 c
Nereistoxin-oxala	te-D ₆	1	C 15502010	1000	10 mg	245 €	5 c	0.3 c
		14	LBS9AR3L1615	1000	1.1 mL	270 €	49 c	2.5 c
Nicotine-D ₄		4	D-5098	1000	100 mg	400 €	0.8 c	0.04 c
		14	LBS9B3L3297	1000	1.1 mL	420 €	76 c	3.8 c
Oxymatrine-D3		7	0876302		5 mg	600€	24 c	1.2 c
		2	Friendly donation					
MPPA-D3		7	M326162		10 mg	1.921 €	38 c	1.9 c
		3	680891	100	1mL	380 €	760 c	38 c
		14	LBS9AZ3L1605	1000	1.1 mL	1.800 €	327 c	16.4 c
	D ₆ -diiodide	1	C 15870200		50 mg	256 €	1.0 c	0.05 c
		14	CRM9AZ3L1611	1000	1.1 mL	180 €	33 c	1.6 c
Paraquat	D ₆ -dichloride (dimethyl D ₆)	1	DRE-C15870050		50 mg	390 €	1.6 c	0.08 c
	D ₈ -dichloride	1	DRE-CA15870100		50 mg	390 €	1.6 c	0.08 c
		7	P191902		25 mg	920€	7.3 c	0.4 c
		5	OLM-7310-1.2	100	1.2 mL	326 €	272 c	14 c
Perchlorate-18O ₄		12***		40	5 mL	250 €	125 c	6.3 c
		9	631981		10 mg	4.500 €	90 c	4.5 c
Phosphonic acid-	¹⁸ O ₃	12		2000	1 mL	125	6.3 c	0.3 c
	D ₆	7	P758462		10 mg	1050€	21 c	1.1 c
Pronamocarh		4	DER-XA16390100AC	100	1.1 mL	82€	149 c	7.5 c
Propamocarb	D ₇	9	80757		5 mg	230 €	9.2 c	0.5 c
		14	LBS9G3L3296	1000	1.1 mL	320 €	58 c	2.9 c
	D	6	D535 (not available)		100 mg	756 €	1.5 c	0.1 c
NT. I	D_6	7	P836802****		10 mg	1.100 €	22 c	1.1 c
J			0=0=0			205.6		0.4 -
PTU	D ₃	9	07359		5 mg	205 €	8.2 c	0.4 c

Isotope labelled compound		Carres	Article-No.	Conc.	Amount	Prices in €-cent (see diclaimer)		
isotope labelled co	ompound	Source	Article-No.	(μg/mL)	per unit	1 unit 2 μg* 1.854 \$ 74.2 c 350.61 € 7 c 420 \$ 84 c 350.61 € 7 c 350.61 € 7 c 420 \$ 84 c 350.61 € 7 c 420 \$ 84 c 350.61 € 7 c 153 € 31 c 141 € 2.8 c 180 € 33 c 2.670 € 53 c 726 € 144 c 730 € 0.7 c 270 € 2.6 c	2 μg*	0.1 μg**
	¹³ C ₂ , ¹⁵ N ₃	2	Friendly donation					
1, 2, 4-Triazole	C2, 1N3	16	3201		5 mg	1.854 \$	74.2 c	3.7 c
	D ₂	19	RCG-401		10 mg	350.61 €	7 c	0,35 c
1, 2, 4-Triazole-	¹³ C ₂ , ¹⁵ N ₃	2	Friendly donation					
acetic acid	C ₂ ,IN ₃	16	15297		1 mg	420 \$	84 c	4.2 c
acetic aciu	D ₂	19	RCG-398		10 mg	350.61€	7 c	0,35 c
1, 2, 4-Triazole-al-	¹³ C ₂ , ¹⁵ N ₃	2	Friendly donation					
anine	D ₂	19	RCG-399		10 mg	350.61€	7 c	0,35 c
1, 2, 4-Triazole- lactic acid	¹³ C ₂ , ¹⁵ N ₃	2	Friendly donation					
		16	15295		1 mg	420 \$	84 c	4.2 c
	D ₂	19	RCG-400		10 mg	350.61€	7 c	0,35 с
	"D ₁₅ " (in reality D ₁₂)	1	CIL-DLM-7663		1 mg	153 €	31 c	1.5 c
Triethanolamine	D ₁₂	7	T775582		10 mg	141 €	2.8 c	0.15 c
		14	LBS9G3L3096	1000	1.1 mL	180 €	33 c	1.6 c
Trifluoroacetic	¹³ C ₂ (sodium salt)	7	S673752		10 mg	2.670 €	53 c	2.7 c
acid	¹³ C ₂ (sodium salt)	11	sc-473400		1 mg	726€	144 c	7.3 c
		6	D2677		100 mg	730 €	0.7 c	0.04 c
Trimethyl- sulfonium-(io-	D	6	D2677		10 mg	270 €	2.6 c	0.13 c
	D ₉	4	D-6093		500mg	430 €	0.2 c	0.009 c
dide)		14	LBS9G3L1614	1000	1.1 mL	605.71€	110 c	5.5 c
	D ₃	3	684243		10 mg	100€	2 c	0.1 c

Providers of compounds:

- 1: LGC Standards
- 2: Bayer Crop Science
- 3: HPC (High Purity Compounds)
- 4: CDN Isotopes (distributed in Germany by EQ Laboratories GmbH)
- 5: Cambridge Isotope Lab. Inc.
- 6: Medical isotopes
- 7: Toronto Research Chemicals (became a brand of LGC Standards)
- 8: ALSACHIM
- 9: Sigma-Aldrich-Supelco (Merck)
- 10: Cerilliant (by Sigma Aldrich)

11: Santa Cruz biotechnology. Inc.

12: EURL-SRM (hosted at CVUA Stuttgart)

13: Campro Scientific / Chiron AS

14: Lab Instruments

15: Chem Service Inc.

16: IsoSciences

17: MuseChem

18: ASCA GmbH

19: ReseaChem GmbH

20: Cymit Quimica

(<u>Disclaimer</u>: The use of trade names is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the EURL of any product to the exclusion of others. Market prices and currency exchange rates may not be up-to-date. Shipping costs are not included in the pricing.

^{* 2} µg IS are typically employed to samples (typically 10 g) at the beginning of the procedure

^{** 0.1} µg are typically added to 1 mL aliquots of sample extracts (typically corresponding to 0.5 g sample), in this case only matrix-effects are compensated

^{***} Due to manufacturing process the stock solution of ¹⁸O₃-Chlorate is accompanied by ca 20% ¹⁸O₄-Perchlorate.. As perchlorate typically exhibits a ca. 5-fold higher LC-MS/MS-sensitivity compared to chlorate the signal intensities of the two are end up within the same range.

^{****} The PTU-D₆ offered by (7) used to be the non-branched 1,3 propylene variant. This product did not exactly co-elute with the target analyte and thus not compensating mtrix effects. It now seems to be the right product N,N'-(1,2-Propylene)thiourea-D₆

Table 47: Exemplary concentrations of Internal Standard Working Solutions (IS-WS) (3.24)

Table 47: Exemplary concentrations of Internal Standard Working Solutions (IS-WS) (3.24)							
	IS –Addition to samples (5.2.3)	IS-Addition to calib				
		Absolute mass of IS		Absolute mass of IS	Expected approx IS-		
	Suggested concentration		Suggested con-	spiked to calibration	concentration in sample ex-		
Internal Standard (IS)*	of IS-WSIn1 (3.24)	μL IS-WSln1)	centration of IS-	standard	tracts (~20 mL) and calibra- tion standards (~1 mL)		
		(m _{IS} sample)	WSln2 (3.25) **	(100 μL IS-WSIn2) (m _{IS} ^{cal mix})	tion standards (1 mt)		
	μg/mL	μg	μg/mL	μg	μg/mL		
Amitrole-(15N)/ (15N ₂ ,13C ₂)	20	2	1	0.1	0.1		
AMPA- ¹³ C. ¹⁵ N	20	2	1	0.1	0.1		
Bromate-18O ₃	<mark>20</mark>	2	<u>1</u>	0.1	<mark>0.1</mark>		
Chlorate- ¹⁸ O ₃	20	2	1	0.1	0.1		
Chloridazon-desphenyl- ¹⁵ N ₂ (IL-IS)		2	2	0.2	0.2		
Chlormequat-D ₄	10	1	0.5	0.05	0.05		
Cyromazine-D ₄	20	2	1	0.1	0.1		
Daminozid-D ₆	10	1	0.5	0.05	0.05		
Diethanolamine-D ₆	20	2	1	0.1	0.1		
Difluoroacetic acid -13C ₂	10	1	1	0.05	0.05		
Dihydrostreptomycin****	20	2	1	0.1	0.1		
Diquat D 4****	40	_ <mark>4</mark>	- <mark>2</mark>	0.2	0.2		
Diquat D ₈	20	2	1	0.1	0.1		
Ethephon-D ₄	20	2	1	0.1	0.1		
ETU-D ₄	20	2	1	0.1	0.1		
Fosetyl-D ₅			_				
(from fosetyl-aluminium-D ₁₅)	20	2	1	0.1	0.1		
Glufosinate-D ₃	20	2	1	0.1	0.1		
Glyphosate- ¹³ C ₂ . ¹⁵ N	20	2	1	0.1	0.1		
HEPA-D ₄	20	2	1	0.1	0.1		
Maleic Hydrazide-D ₂	20	2	1	0.1	0.1		
Melamine- ¹⁵ N ₃	20	2	1	0.1	0.1		
Mepiquat-D₃	10	1	0.5	0.05	0.05		
Morpholine-D ₈	20	2	1	0.1	0.1		
MPPA-D ₃	20	2	1	0.1	0.1		
N-Acetyl-Glufosinate-D ₃	20	2	1	0.1	0.1		
N-Acetyl-glyphosate-13C ₂ .15N	20	2	1	0.1	0.1		
Nereistoxin-D ₄	10	1	0.5	0.05	0.05		
Nicotine-D ₄	10	1	0.5	0.05	0.05		
Paraquat-D ₆	40	4	2	0.2	0.2		
Paraquat-D ₈	<mark>20</mark>	<mark>2</mark>	<mark>1</mark>	<mark>0.1</mark>	<mark>0.1</mark>		
Perchlorate-18°4	20	2	1	0.1	0.1		
Phosphonic acid-18O ₃	20	2	1	0.1	0.1		
Propamocarb-D ₇	2	0.2	0.1	0.01	0.01		
PTU-D ₆	10	1	0.5	0.05	0.05		
Triethanolamine-D ₁₂	10	1	0.5	0.05	0.05		
Trifluoroacetic acid -13C ₂	10	1	1	0.05	0.05		
Trimethylsulfonium-D ₁₀	10	1	0.5	0.05	0.05		

^{*} The concentration of the IL-IS should be high enough to ensure good detection with little influence of signal noise (S/N>20 is typically fine). It should be kept in mind. However. That isotopically labeled ISs (IL-ISs) sometimes contain small amounts of the non-labeled analogues. To minimize the risk of false positives the amount of IL-IS added to the samples should thus not be higher than necessary. Quantification of the parent is typically not affected to a great extend as the cross-contamination is typically at low levels and as similar concentrations of the native pesticide originating from the IL-IS will also be present in the calibration standards and thus subtracted via the intercept. In the case of Maleic Hydrazide. Where the IL-IS is added at higher concentrations to the samples special attention is necessary (see also comments under **5.6.3**).

**** to be avoided due to stability problems

NOTE: If detections of a compound are rather seldom and the IS expensive it is advisable to add the IL-IS to the 1 mL aliquot transferred to the auto-sampler vial (see **Table 46**). Alternatively. It can be even skipped entirely in the first screening analysis and only added in a second analysis in case the first one was positive. The first approach is to be preferred especially where the

^{**} a 20-fold dilution of the IS working solution used to spike samples in step **5.2.3**.

^{***} Dihydrostreptomycin is not isotopically labeled but still suitable for compensation of matrix effects on Streptomycin, if LC conditions are adjusted to ensure exact co-elution and thus equivalent matrix-effects.

retention times of a compound tends to shift. By comparing the retention time between the IS and the suspected peak as well as the peak shape the certainty of identification significantly improves.

Table 48: Water content of selected foods and water amount to be added to test portions prior to extraction (**5.2.2**) depending on the analytical approach

пе инатушсит ирргс			Typical natural	Matauta ha	Water addition may be	
Commodity group	Commodity	Sample weight	water content g/100 g	Water to be added	skipped if suitable IS is used before aliquotation	Remarks
			Fruits			
Citrus fruit	Citrus juices	10 g	90	1	Yes	
	Grapefruit	10 g	90	1	Yes	
	Lemon/lime	10 g	85	1.5	Yes	
	Orange	10 g	85	1.5	Yes	
	Tangerine	10 g	90	1.5	Yes	
Pome fruit	Apple	10 g	85	1.5	Yes	
Tome muit	Apple sauce	10 g	80	2	Yes	
	Apple juice	10 g	90	1	Yes	
	Pear	10 g	85	1.5	Yes	
	Quince	10 g	85	1.5	Yes	
Stone fruit	Apricot	10 g	85	1.5	Yes	
Stolle Huit	Apricot nectar	10 g	85	1.5	Yes	
	Cherry	_	85	1.5	Yes	
	Mirabelle	10 g 10 g	80	2	Yes	
	Nectarine	10 g	85	1.5	Yes	
	Peach	10 g	90	1.3	Yes	
	Plum	10 g	85	1.5	Yes	
Soft and small fruit	Blackberry	10 g	85	1.5	Yes	
Soft and Small mult	Blueberry	10 g	85	1.5	Yes	
	Currant	10 g	85	1.5	Yes	
	Elderberry	10 g	80	2	Yes	
	Gooseberry	10 g	90	1	Yes	
	Grapes	10 g	80	2	Yes	
	Raspberry	10 g	85	1.5	Yes	
	Strawberry	10 g	90	1.3	Yes	
	Pineapple	10 g	85	1.5	Yes	
Other fresh fruits	Banana	10 g	75	2.5	No	
Other fresh fruits	Fig	10 g	80	2.3	Yes	
	Kiwi	10 g	85	1.5	Yes	
	Mango	10 g	80	2	Yes	
	Papaya	10 g	90	1	Yes	
	Kaki/persimmon	10 g	90	1	Yes	
Dried fruit	Apple, dried	5 g	20	9	No	
Difect fruit	Apricot, dried	5 g	20	9	No	Maigh 14 g robudro
	Figs, dried	5 g	20	9	No	Weigh 14 g rehydra- tized homogenate
	Prunes (dried plums)	5 g	20	9	No	(500 g +900 g water)
	Raisins	5 g	15	9	No	(See & See & Hately
	Apricot, dried soft	5 g	30-35	8,5	No	Weigh 13.5 g rehy-
	Figs, dried soft	5 g	30-35	8,5	No	dratized homogenate (500 g +850 g water)
	Prunes, soft	5 g	35-40	8	No	Weigh 13 g rehydra- tized homogenate (500 g +800 g water)
			Vegetables			
Root and tuber vege-	Beetroot	10 g	90	1	Yes	
tables	Carrot	10 g	90	1	Yes	
	Celeriac	10 g	90	1	Yes	
	Horseradish	10 g	75	2.5	No	
	Parsley root	10 g	90	1	Yes	
	Radish	10 g	95	0.5	Yes	
	Black salsify	10 g	80	2	Yes	

			Typical natural		Water addition may be	
Commodity group	Commodity	Sample weight	water content	Water to be added	skipped if suitable IS is	Remarks
			g/100 g		used before aliquotation	
	Potato	10 g	80	2	Yes	
	Garlic	10 g	65	3.5	No	
Leek plants	Onion	10 g	90	1	Yes	
	Leek	10 g	85	1.5	Yes	
	Shallot	10 g	80	2	Yes	
	Chives	10 g	85	1.5	Yes	
Fruiting vegetables	Aubergine	10 g	90	1	Yes	
	Cucumber	10 g	95	0.5	Yes	
	Melon	10 g	90	1	Yes	
	Pepper. Sweet	10 g	90	1	Yes	
	Pumpkin	10 g	95	0.5	Yes	
	Tomato	10 g	95	0.5	Yes	
	Zucchini	10 g	95	0.5	Yes	
	Broccoli	10 g	90	0.5	Yes	
Brassica crops	Brussel sprouts	10 g	90 85	1.5	Yes	
Diassica Ciups	Cauliflower	10 g	90	1.5	Yes	
	Chinese cabbage	10 g	95	0.5	Yes	
	Kale	10 g	90	1	Yes	
	Kohlrabi	10 g	90	1	Yes	
	Red cabbage	10 g	90	1	Yes	
	Savoy cabbage	10 g	90	1	Yes	
	White cabbage	10 g	90	1	Yes	
Leafy vegetables and	Lettuce varieties	10 g	95	0.5	Yes	
herbs	Endive	10 g	95	0.5	Yes	
	Cress	10 g	90	1	Yes	
	Lamb's lettuce	10 g	85	1.5	Yes	
	Parsley	10 g	80	2	Yes	
	Rucola	10 g	85	1.5	Yes	
	Spinach	10 g	90	1	Yes	
Fresh legumes	Fresh Peas	10 g	75	2.5	No	
- resurregumes	Green Beans	10 g	90	1	Yes	
Stem	Asparagus	10 g	95	0.5	Yes	
vegetables	Celery	10 g	95	0.5	Yes	
ŭ	Leek	10 g	85	1.5	Yes	
	Rhubarb	10 g	95	0.5	Yes	
	Artichokes	10 g	85	1.5	Yes	
			/ Cereals Oi	lseeds		
Pulses	Pulses (dried Beans,	5 g	<10			Sample amount may
ruises	Peas, Lentils)	Jg	\10	9 mL water and 1 mL EDTA solution*	No	need to be reduced if material strongly ab- sorbs water
Cereals	Grain. Flour etc.	5 g	10	9 mL water and 1 mL EDTA solution*	No	Sample amount may need to be reduced if material strongly ab- sorbs water
Oilseeds	Peanuts, Poppy seeds, Pumpkin seeds, Ses- ame seeds, Soyabeans, Sunflower seeds	5 g	<10	9 mL water and 1 mL EDTA solution*	No	
Oilseeds developing a mucilage/slime on their surface upon wetting	Linseeds, Chiaseeds	5 g	<10	9 mL water and 1 mL EDTA solution*	No	To reduce slime for- mation, which hin- ders residue accesi- bility, first add acidi- fied methanol and then EDTA/water

Commodity group	Commodity	Sample weight	Typical natural water content g/100 g	Water to be added	Water addition may be skipped if suitable IS is used before aliquotation	Remarks
Nuts	Almonds, Cashew nuts, Dried coconuts, Hazel- nuts, Macadamias, Pe- cans, Pistachios, Wal- nuts	5 g	<10	9 mL water and 1 mL EDTA solution*	No	
		M	iscellaneou	S		
Extract-rich ("difficult") commodities	Coffee beans	2 g	<10	9 mL water and 1 mL EDTA solution*	No	Different sample amounts may be
	Tea	2 g	<10	10	No	used depending on
	Dry herbs and spices	2 g	<10	10	No	extract-richness
Miscellaneous Other	Mushrooms fresh	10 g	90	1	Yes	
	Mushrooms dried	2g	<10	10	No	
	Wine	10 g	90	None*	Yes	The wine will mix with the extractant, thus fully contributing to the final extract volume.
	Honey	5 g	20	7.5	No	
	Avocado	10 g	70	3	No	
	Coconut copra	5 g	<10	0		Fat-melting or assistance by grinding balls is needed, see QuPPe-AO (animal fat)
	Olives	10 g	70	3	No	

^{*} The addition of EDTA solution is highly recommended when targeting analytes showing poor recoveries in absence of EDTA. Affected are compounds with a tendency to form complexes with metals, such as Glyphosate and metabolites, Glufosinate and metabolites. If affected analytes are not targeted, EDTA addition may be skipped and 10 mL of water are added.

For the extraction of **Diquat** and **Paraquat**, from this commodity, 10 mL water are added instead of 9 mL water and 1 mL EDTA solution.

Table 49: Exemplary LC-MS/MS parameters for Sciex Qtrap 5500

	Impluty LC-IVI	S) IVIS Pare	111100013 101	JUICK QUI	ap 3300						
Parameters	Methods 1.1/1.2/1.5/ 1.6/ 1.7/1.9/1.10	Method 1.3	Method 1.4	Method 2	Method 3/ 4.1/ 5	Method 4.2	Method 6	Method 7	Method 8 / 9	Method 10	Method 11
lon source (ESI. Turbo lon Spray) Mode	negative	negative	negative	negative	positive	positive	positive	positive	pos. / neg. SelexIon™	positive	negative
Curtain gas (N ₂)	30 psi (2.07 bar)	40 psi (2.76 bar)	40 psi (2.76 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	30 psi (2.07 bar)	40 psi (2.76 bar)	20 psi (1.38 bar)	20 psi (1.38 bar)	40 psi (2.76 bar)
Collision gas					medi	um					high
Ion spray voltage	-4500	-4500	-4500	-4500	1500	5000	5500	1500	5500 / - 5500	5500	-4500
Gas 1 (Zero Grade Air or N ₂)	50 psi (3.45 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)
Gas 2 (Zero Grade Air or N ₂)	60 psi (4.14 bar)	60 psi (4.14 bar)	70 psi (4.83 bar)	60 psi (4.14 bar)	60 psi (4.14 bar)	50 psi (3.45 bar)	60 psi (4.14 bar)	70 psi (4.83 bar)	70 psi (4.83 bar)	70 psi (4.83 bar)	60 psi (4.14 bar)
Tempera- ture of Gas 2	600°C	550°C	550°C	500°C	500°C	500°C	550°C	500°C	550°C	550°C	600°C
Resolution MS 1	unit (approx 0.7 amu FWHM*)										
Resolution MS 2	unit (approx 0.7 amu FWHM)										
Dwell time	20	20	20	50	20	10 !	50	20	20 / 40	20	20

^{*}FWHM = full width at half maximum

Table 50: Exemplary LC-MS/MS parameters for Waters Xevo TQ-Sµ

Parameters	Method 1 M1.6b/M1.7b/M1.8	Method M4.2
Ion source (ESI)	negative	Positive
Source Temperature	150 °C	150 °C
Desolvation Temperature	600 °C	600 °C
Cone Gas Flow	50 L/h	150 L/h
Desolvation Gas Flow	1000 L/h	1000 L/h
Capillary	0.5 kV	0.5 kV
Resolution MS	unit	unit

Table 51: Document History

Action	When?	Version
Development of Method by the CRL-SRM	2006-2008	
Presentation of method at the EPRW in Berlin (oral presentation plus poster)	June 2008	-
Drafting of V1	NovDec. 2008	
Placing of V1 in CRL-Website	Jan. 2009	V1
Update of Table 1.		
Expected concentrations of Iss were calculated with a wrong dilution factor in previous version. Arithmet	- Aug. 2009	V2
ical errors were corrected.	Aug. 2009	٧Z
Introduction of measurement conditions for HEPA within the "Glyphosate & Co." method		
Introduction of measurement conditions for the screening of diquat and paraquat within the "Quats $\&$ Comethod").	
Introduction of measurement conditions for Amitrole. Chlormequat. Mepiquat and daminozide "Amitrole & Co." method	e Nov 2009	V3
Extensive text revisions		
Introduction of measurement conditions for Streptomycin Kasugamycin		
Introduction of measurement conditions for the screening of Perchlorate ion	May 2010	V4
Extensive text revisions		
Extensive text revisions and restructuring of document		
Introduction of measurement conditions for ETU. ETU D ₄ . PTU. PTU D ₆ . Cyromazine. Cyromazine D ₄ . N	- Nov 2010	V5
Acetyl-Glufosinate. N-Acetyl-Glufosinate D ₃ . Glufosinate D ₃ . MPPA D ₃ . Morpholin. Morpholin D ₈		
Introduction of an acronym for the method (QuPPe)		
Advice to use plastic vessels and stoppers for Glyphosate		
Minor modification and additional instructions in Method 1 (M1)		
Modification of mobile phase of M3 to improve analysis of ETU and PTU		
Introd. Of measurement cond. For Amitrole ¹⁵ N ¹³ C and Amitrole ¹⁵ N in M3		
Introd. Of measurement cond. For Nereistoxin and Nereistoxin D6 in M4		
New method (M7) for the analysis of Morpholin/Morpholin D_8 ; Diethanonamine/diethanolanmine D_6 ; Triethanolamine/Triethanolamine D_{12} (M7)	- July 2011	V6
Removal of Morpholin from M4 as it does not separate from the interfering diethanolamine		
Introduction of ETU and PTU and their corresponding IL-ISs in Method 5		
Correction of dimension of stock solutions conc. In Table 12 (to mg/mL)		
Text and Table revisions		
Extensive revision of table concerning possible sources of purchase of Iss		
Some additions in "Apparatus and Consumables" chapter		
Clarifications in chapter concerning standard additions		
Overview table concerning the scope of the methods 1.1. 1.2. 1.3 and 2		
Addition of Phosphonic acid in Method 1.1 ("Glyphosate & Co.")		
New LC-method (Method 1.2) for "Glyphosate & Co." using a Dionex ionPac AS11-HC column and an Eluen	t	
with near to neutral pH; additionallycovering Fosetyl		
New LC-method (Method 1.3) for "Glyphosate & Co." using a Hypercarb column and an acidic Eluent covering all analytes covered by Method 1.1. Method 1.2 and Method 2 (including perchlorate).	Dec. 2012	V7
Update of practical considerations for methods 1.1-1.3		
Update of table with performance data		
Table with exemplary recovery data was deleted (recovery figures can be obtained in the EURL-DataPool		
Update of table with LOQs		
Update of table with providers of IL-ISs		
Elimination of errors in text		
Addition of Chlorate in Method 1.3		
Addition of Chlorate in Method 1.3 Update of practical considerations for methods 1.1-1.3 (Column C)	Nov. 2013	V7.1

Update of table with LOG Introduction of Trimethyloulfonium-D9 and N.N-Dimethylhydrazine-D6 in Method 4 Thorough revision of text and elimination of errors Practical advices on the choice of filter materials New Table 15: Conversion factors between standard materials and analytes Advices as regards the use of It-15S Update of Table 5. IC-MS/MS measurement conditions New chapters "This on Method 1.1—14" and replacement of the section "Practical care and use considerations concerning the columns of methods 1.1—13. This includes information on various potential sources of errors such as in-source fragmentations of fosetyl and Ethephon to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution. Introduction of Vanjue card and Biasiphos in M1.3 Correction of a typing error concerning the mass various of Phosphonic acid (\$1.79 instead of \$1.81) introduction of their pile groot processing the mass various of Phosphonic acid (\$1.79 instead of \$1.81) introduction of the It-15 of Proposhonic acid and thiorate in M1.3 and 1.4 New LC Method (1.4) for "PerChioPhor" using a Hypercarb column and an acidic Eluent optimized for chlorate. Perchiorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propomocrab as well as the corresponding It-15s in M4.1 New LC Method (M8.2) certification and this object of the method M5. New LC method (M8.9) for the analysis of trizable derivative metabolite (TDMs) and their corresponsing It-15s. Update of Table 47: Providers of isotopically labeled internal standards. 1. Sample preparation note to importance of having small particle sizes. 5.2 information on the methods currently routledy used at CVUA Stuttgart. Update of Table 48: Develope and the Analysis of trizable derivative metabolite (TDMs) and their corresponsing It-15s. Update of Table 48: Develope and the Method 1.4 Update of Table 48: Develope and the Method 1.4 Update of Table 48: Providers of isotopically labeled inte	Action	When?	Version
Introduction of Trimethylsulfonium-D9 and N.N-Dimethylhydrazine-D6 in Method 4 Thorough revision of text and elimination of errors Practical advices on the choice of filter materials New Table 15: Conversion factors between standard materials and analytes Advices as regards the use of itIs Update of Table 5:6: IC-MS/MS measurement conditions New chapters "Hints on Method 1.1 – 1.4" and replacement of the section "Practical care and use considerations contenting the columns of methods 1.1 – 3.1 his includes information on various potential sources of errors such as in-source fragmentations of Fosset/ and Ethephon to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution. Introduction of the IL-Is of Phosphonic acid and Maintenance and analysis of many plants and introduction of the IL-Is of Phosphonic acid and makes-transitions of Phosphonic acid (81/79) instead of 81/81) introduction of the IL-Is of Phosphonic acid and makes-transitions of Phosphonic acid (81/79) instead of 61/81). New I.C Method (1.4) for "Perchlorehos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Perchlorate. Phosphonic acid accompared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-Iss in M4.1. New I.C Method (1.4) for "Perchlorehos" using a Hypercarb column and analowing the simultaneous analysis of many paida pesticides Reduction of injection volume and increase of dwell-time in method M6 New I.C-method (M8) for the analysis of trizole derivative metabolite (IDMs) and their corresponsing IL-Iss Update of Table 17. Providers of isotopically labeled internal standards S.1 Sample preparation: note to importance of thaving small particle sizes S.2.4 notes to extraction time for dry products and the influence of particle size S.3.6 information on the methods currently routinely used at CVUA Stuttgart Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Chapter 5: Procedu	Update of table with LOQs		
Photocogh revision of text and elimination of errors Practical advices on the choice of filter materials New Table 15: Curversion factors between standard materials and analytes Advices as regards the use of it-liss Update of Table 5: EL-MS/MS measurement conditions New chapters 'Flinis on Method 1.1-1.3' and replacement of the section "Practical care and use considerations concerning the columns of methods 1.1-1.3. This includes information on various potential sources of errors such as in-source fragmentations of Fossys had Ehephon to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution. Introduction of Cyanuric acid and Bialaphos in M1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (83/79 instead of 81/81) introduction of the IL-IS of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (14) for "Perchlofreds' using a Hypercarte olumn and an acidic Eluent optimized for chlorate. Pensphonic acid acompared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamicarte olumn and an acidic Eluent optimized for chlorate. Pensphonic acid acompared to Method 1.3 New LC Method (144.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (1M8) for the analysis of trizacle derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle size S.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Scicus QTRAP S500 Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the DuPater S7-3.1: Hints on Method 1.3 Update of Table 4: Cover			
Practical advices on the choice of filter materials New Table 15: Conversion factors between standard materials and analytes Advices as regards the use of IL-15 Update of Table 5.6: IC-MS/MS measurement conditions New chapters "Hints on Method 1.1 - 1.4" and replacement of the section "Practical care and use considerations contended the methods 1.1-1.3. This includes information on various potential sources of errors such as in-source fragmentations of rosetyl and thee/hor to Phosphonic acid and of Perchlorate to Chinarte as well as degradation of compounds in opticion. Introduction of the IL-15 of Phosphonic acid and Bialaphos in M1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of the IL-15 of Phosphonic acid and mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of the IL-15 of Phosphonic acid and mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of Method 1.4. New I.C Method (14.1) for "PerchloPhos" using a shypercarb column and an acidic Eluent optimized for chlorate. Perchlorate. Phosphonic acid compared to Method 1.3 The New I.C Method (14.2) employing a Hillic Type BEH Amide column allowing the simultaneous analysis of many polar positides Reduction of Injection volume and increase of dwell-time in method M8 New I.C method (M8) for the analysis of trizacide derivative metabolite (TDMs) and their corresponsing IL-15s Update of Table 17: Providers of isotopically labeled internal standards Update of Chapter 5: Procedure including the extraction procedure at a glance Update 20: Exemplary IMS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Chapter 5: Procedure including the extraction procedure including the extraction procedure including the e			
New Table 15: Conversion factors between standard materials and analytes Advices as regards the use of II-15s Update of Table 5: LC-MS/NS measurement conditions New chapters "Hints on Method 1.1 - 1.4" and replacement of the section "Practical care and use considerations concerning the columns of methods 1.1-13. This includes information on various potential sources of errors such as in-source fragmentations of Fossely and Ethephen to Phosphonic acid and of Perchipate to Chlorate as well as degradation of compounds in solution. Introduction of Cyanuric acid and Blaphpois in N.1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of Cyanuric acid and Blaphpois in N.1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of the It-IS of Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hilic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of frazioe derivative metabolite (TDMs) and their corresponsing IL-ISS in M4.1 New LC Method (M8) for the analysis of traincide derivative metabolite (TDMs) and their corresponsing IL-ISS in Sample preparation: note to importance of having small particle size S.5.4 notes to extraction time for dry products and the influence of particle size S.5.5 information on the methods currently routinely used at CVLA Stuttgart Update of Table 47: Perceivers of isotopically labeled internal standards S.5.6 information on the methods surveilly reparative at a glance Update of Table 48: Exemplany Lc-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5.7.3.1. iffirst on Method 1.3 Update of Chapter 5.7.3.1. iffirst on Method 3.4 Update of Chapter 5.7.3.2. iffirst on Method	-		
Advices as regards the use of IL-ISS Update of Table 5.6: IC-MS/MS measurement conditions New chapters "Histos on Method 1.1—1.4" and replacement of the section "Practical care and use considerations concerning the columns of methods 1.1—1.3. This includes information on various potential sources of errors such as in-source fragmentations of Foseyl and Ethephon to Phosphonic acid and of Perchlorate to Chilorate as well as degradation of compounds in solution. Introduction of Cyanuria caid and Bialaphos in M1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) Introduction of the IL-IS of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (1.4) for "PerchloPhos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Perchlorate Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M.2) pemploying a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides New LC Method (M.9) for the analysis of triazoid edivitative metabolite (TDMs) and their corresponsing IL-ISS in Mass of the M1.2 Update of Table 37: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2 A notes to extraction time for dry products and the influence of particle size 5.3 Information on the methods currently routinely used at CVUA Stuttgart Update of Table 40: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 41: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 42: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 44: Overview and scope of the methods proposed within this document for the QuPPe method of Streptomycin and Kaugamycin*. Change of gradient and new chromatograms Update o			
Update of Table 5.6: LC-MS/MS measurement conditions New chapters "Hints on Method 1.1—1.4" and replacement of the section "Practical care and use considerations concerning the columns of methods 1.1—1.3. This includes information on various potential sources of errors such as in-source fragmentations of Fosetyl and Ethephon to Phosphonic acid and of Perchiorate to Chlorate as well as degradation of compounds in solution, introduction of Cyanuric acid and Bilalphos in M1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of the IL-IS of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (1.4) for "PerchioPhos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Perchiorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS in M4.1 New LC Method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS in M4.1 Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation, note to importance of having small particle sizes 5.2 A notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update of Table 2: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Table 4: Overview and scope of the methods proposed within this	·		
New chapters "Hints on Method 1.1 — 1.4" and replacement of the section "Practical care and use considerations conterning the columns of methods 1.1-1.3. This includes information on various potential sources of errors such as in-source fragmentations of Foseyla and Ethephen to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution. Introduction of Cyanuric acid and Bialphos in N1.3 Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) introduction of the II-IS of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (1.4) for "Perchlorabor" using a Hypercarb column and an acidic Eluent optimized for chlorate. Phosphonic acid compared to Method 1.3 Change of name of former M1 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of nijection volume and increase of dwell-time in method M6 New LC-method (M6) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS. Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2 4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update of Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Method 4.2: "Youts & Co BEH Amide" including Aminocyclopyrachior. Chloridazon-desphenyl. Meligial and Meligial analysis of Melicial and Meligial analysis of Melicial analysis of Melicial and Melicial analysis of Melicial analys			
Correction of a typing error concerning the mass-transitions of Phosphonic acid (81/79 instead of 81/81) Introduction of the IL-15 of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (1.4) for "PerChloPhos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (1M4.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2 anotes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydrow, Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6 in "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 43: Devriew of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions U	erations concerning the columns of methods 1.1-1.3. This includes information on various potential sources of errors such as in-source fragmentations of Fosetyl and Ethephon to Phosphonic acid and of Perchlorate to Chlorate as well as degradation of compounds in solution.		
Introduction of the IL-IS of Phosphonic acid and chlorate in M1.3 and 1.4 New LC Method (1.4) for "PerChiOPhos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Perchlorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hillic Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISs Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2 4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method in the proposed proposed within this document for the QuPPe method in the proposed proposed proposed within this document for the QuPPe method in the proposed pr			
New LC Method (1.4) for "PerChloPhos" using a Hypercarb column and an acidic Eluent optimized for chlorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-15s in M4.1 New LC Method (M4.2) employing a Hilic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-15s Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.5 information on the methods currently routinely used at CVUA Stuttgart Update of Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Chapter 5: 7.3.1: Hints on Method 1.3 Update of Chapter 5: 7.3.1: Hints on Method 1.4 Update of Chapter 5: 7.4.1: Hints on Method 1.4 Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of pesticide stock and working solutions		Mar. 2015	V8
rate. Perchlorate. Phosphonic acid compared to Method 1.3 Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2 a notes to extraction time for dry products and the influence of particle size 5.2 a notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7 a.1.: Hints on Method 1.3 Update of Chapter 5.7 a.1.: Hints on Method 1.3 Update of Of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide Ion Update of Chapter 5.7 a.1.: Hints on Method 4.2 "Quats & Co BEH Amide" including Aminocyclopyrachior. Chloridazon-desphenyl. Mejeiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods pr			
Change of name of former M4 to M4.1 Introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hilic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.2.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1: Hints on Method 1.4 Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of Posticide stock and working solutions Update of Table 47: Exemplary concentrations of Posticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Update of Table 47: Exemplary concentrations of IS working solutions Update o			
introduction of Melamine and Propamocarb as well as the corresponding IL-ISs in M4.1 New LC Method (M4.2) employing a Hillic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.5.6 information on the methods currently routinely used at CVUA Stuttgart Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1: Hints on Method 1.3 Update of Chapter 5.7.4: Lithits on Method 1.4 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 44: Converiew of approximate limits of quantification (IOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of jts working solutions Update of Table 47: Exemplary concentrations of jts working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-			
New LC Method (M4.2) employing a Hilic-Type BEH Amide column allowing the simultaneous analysis of many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL-ISS Update of Table 17: Providers of isotopically labeled internal standards 5. 1 Sample preparation: note to importance of having small particle sizee 5. 2.4 notes to extraction time for dry products and the influence of particle size 5. 2.4 notes to extraction time for dry products and the influence of particle size 5. 6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quarts & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6. Stype in Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 48: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of 15 working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-	·		
many polar pesticides Reduction of injection volume and increase of dwell-time in method M6 New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL- ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Chapter 5.7.3.1: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 [MB]: "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of 15 working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-			
New LC-method (M8) for the analysis of triazole derivative metabolite (TDMs) and their corresponsing IL- ISS Update of Table 17: Providers of isotopically labeled internal standards 5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Apter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy, Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 Mells: "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- Crober 2016 October 2016			
Update of Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Table 42: Overview and scope of the methods proposed within this document of Bromate and Bromide ion Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Map; 2016 Update of Method 4.2: "Overview of approximate limits of quantification (LOQs)" Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of 15 working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this document for the QuPPe method Way 2015 May 2015 Way 2015 May 2015 Way 2016 Way 2016 Way 2016 Chapter 2016	Reduction of injection volume and increase of dwell-time in method M6		
5.1 Sample preparation: note to importance of having small particle sizes 5.2.4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Ghapter 5.7.3.1.: Hints on Method 1.3 Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Chapter 5.7.4.1: Hints on Method 1.4 Update of Chapter 5.7.4.1: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (MS): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of is working solutions Update of Table 47: Exemplary concentrations of is working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- Ortober 2016			
5.2.4 notes to extraction time for dry products and the influence of particle size 5.6 information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-	Update of Table 17: Providers of isotopically labeled internal standards		
5.6. information on the methods currently routinely used at CVUA Stuttgart Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- October 2016 October 2016 October 2016 October 2016 October 2016	5.1 Sample preparation: note to importance of having small particle sizes		
Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Chapter 5.7.3.1.: Hints on Method 1.4 Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-oxide Update of Method 4.2: "Guats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 5: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 42: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of 15 working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this docortopics. V9.2	5.2.4 notes to extraction time for dry products and the influence of particle size		
Update Table 20: Exemplary LC-MS/MS parameters for Sciex QTRAP 5500 Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) May. 2016 May. 2016 V9.1 Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this docortons.	5.6 information on the methods currently routinely used at CVUA Stuttgart	May 2015	V8.1
Update of Chapter 5: Procedure including the extraction procedure at a glance Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 43: Exemplary concentrations of pesticide stock and working solutions Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 47: Exemplary concentrations of IS working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- October 2016 October 2016			
Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe method Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this docordinate in the control of the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in the control of the methods proposed within this docordinate in th			
Update of Table 8: Methods mainly used by CVUA Stuttgart Update of Chapter 5.7.3.1: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1:: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) May. 2016 V9.1 Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 October 2016	Update of Table 4: Overview and scope of the methods proposed within this document for the QuPPe		
Update of Chapter 5.7.3.1.: Hints on Method 1.3 Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) May. 2016 May. 2016 V9.1 Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this docordocard in the control of the control of the methods proposed within this docordocard in the control of the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the methods proposed within this docordocard in the control of the control of the methods proposed within this docordocard in the control of the co			
Update of Method 1.4: Introduction of measurement conditions for the measurement of Bromate and Bromide ion Update of Chapter 5.7.4.1.: <i>Hints on Method 1.4</i> Update of Method 4.2: "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) May. 2016 May. 2016 V9.1 Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016			
mide ion Update of Chapter 5.7.4.1.: Hints on Method 1.4 Update of Method 4.2 : "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6 : "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 October 2016			
Update of Method 4.2 : "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6 : "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 October 2016	•		
Update of Method 4.2 : "Quats & Co BEH Amide" including Aminocyclopyrachlor. Chloridazon-desphenyl. Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6 : "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 October 2016	Update of Chapter 5.7.4.1.: Hints on Method 1.4		
Mepiquat-4-hydroxy. Propamocarb-N-desmethyl. Propamocarb-N-oxide Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- October 2016 V9			
Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 October 2016			
Update of Table 42: Overview of approximate limits of quantification (LOQs)* Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 V9.2	Update of Method 6: "Streptomycin and Kasugamycin". Change of gradient and new chromatograms	Mar. 2016	V9
Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20): Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- October 2016 V9.2	Update of Method 8 (M8): "Triazole derivative metabolites (TDMs)" new DMS parameters		
Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-	Update of Table 42: Overview of approximate limits of quantification (LOQs)*		
Update of Table 45: Exemplary concentrations of pesticide stock and working solutions Update of Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-	Update of Table 44: Conversion factors between typical purchased standards and target analytes (3.20):		
Table 46: Providers of isotopically labeled internal standards Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-			
Update of Table 47: Exemplary concentrations of IS working solutions Elimination of an error in method 1.4 (Change in dilution procedure) Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc- October 2016 V9.2			
Elimination of an error in method 1.4 (Change in dilution procedure) May. 2016 V9.1 Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-October 2016 V9.2	Table 46: Providers of isotopically labeled internal standards		
Inclusion of N-Acetyl-Glyphosate in Table 3: Overview and scope of the methods proposed within this doc-	Update of Table 47: Exemplary concentrations of IS working solutions		
October 2016 V9.2	Elimination of an error in method 1.4 (Change in dilution procedure)	May. 2016	V9.1
		October 2016	V9.2

	When?	Version
Inclusion of N-Acetyl-Glyphosate in Table 4: Practical Information: Mainly used methods used at CVUA Stuttgart		
Addition of a further Ethephon-IL-IS mass trace and inclusion of N-Acetyl-Glyphosate in Table 7: Proposed LC-MS/MS conditions for Ethephon. HEPA (Ethephon metabolite). Glyphosat. AMPA (Glyphosate metabolite). N-Acetyl-Glyphosate (Glyphosate metabolite). N-Acetyl-AMPA (Glyphosate metabolite). Glufosinate MPPA (Glufosinate metabolite). N-Acetyl-Glufosinate (Glufosinate metabolite). Fosetyl-Al. Maleic Hydrazide. Cyanuric acid and Bialaphos.		
Update of Figure 4: Chromatograms of Ethephon. HEPA. Glyphosat. AMPA. Glufosinate. MPPA. N-Acetyl-AMPA. N-Acetyl-Glufosinate. Fosetyl-Al. Maleic Hydrazide. Cyanuric acid.Bialaphos and N-Acetyl-Glyphosate at 0.1 mg/kg on almond extract.		
Inclusion of N-Acetyl-Glyphosate in Table 18: Overview of approximate limits of quantification (LOQs)		
Update of Table 19: Conversion factors between typical purchased standards and target analytes (3.15)	_	
Update of Table 20: Exemplary concentrations of pesticide stock and working solutions (3.15 and 3.16), solvent proposals also apply to IL-ISs (see 3.18. 3.19 and 3.20).		
Inclusion of N-Acetyl-Glyphosate in Table 21: Exemplary providers of isotopically labeled internal standards 3.17.	S	
Update of Table 22: Exemplary concentrations of IS working solutions (3.19)		
New Method: (Method 9 "Difluoroacetic acid and Trifluoroacetic acid"), see 5.6.22		
Proposed volume of IS-WS II changed to match with volume of IS-WS I (see Table 2)		
Update of Table 4: data on M 9 were included		
Hints on stability of standard solutions added in 0, including Table 41		
Overview of lowest successfully validated levels (Table 42)	A mril 2017	V9.3
Update of Table 44 : DFA and TFA added	April 2017	V9.5
Update of <i>Table 45</i> : DFA and TFA added; solvents for Ethephon, Fosetyl and Maleic Hydrazide changed		
Update of Table 48		
Update of Table 47: DFA and TFA added		
Table 49: data on M 9 were included		
Extensive general revision of text, tables and figures		
Addition of nuts and oilseeds to the scope of the method		
Update of centrifuge information under 2.5		
Update of syringe filters information under 2.6		
Revision of sample preparation conditions section (5.1) to include milling of oilseeds and nuts and more		
details on how to accomplish cryogenic milling using carbon dioxide and liquid nitrogen		
Revision of the chapter concerning centrifugation (5.2). Inclusion of pre-centrifugation freeze-out and cryogenic centrifugation as an option to improve the subsequent filtration behaviour		
Revision of Figure 1 QuPPe-PO-Method at a glance		
Splitting of Table 3 (Overview and scope of methods) and splitting into Table 3 and 4	D 2010	V40
New method M 1.5 (Glyphosate&Co. using Trinity Q1)	Dec 2018	V10
New Method M 1.6 (Glyphosate&Co. using DEA Torus)		
Inclusion of Nicotine under Method 4.2		
Introduction of Chapter 6 on Analyte Stability		
Extention of Table 22 (Overview of lowest successfully validated levels per matrix)		
Addition of Table 23 (Validation data deriving from Interlab validation studies)		
Update of Table 24 (Conversion factors between typical purchased standards and target analytes)		
Update of Table 25 (Exemplary concentrations of pesticide stock and working solutions)		
Update of Table 26 (Exemplary providers of isotopically labeled internal standards)		
Change of the wording of the document title		
Update of method for pulses, oilseeds and nuts. Method now involves addition of EDTA during the extraction step for complexation metals that may interfere with analysis of certain analytes	- - April 2019	V10.1
tion step for complexation metals that may interfere with analysis of certain analytes		
Update of cleanup procedure for the removal of lipids and proteins		

Action	When?	Version
Maleic hydrazide added to Methode 4.2		
Introduction of a list with shortcut-links		
Update of Table 4 (Overview of scope)		
Update of Table 5 (Overview of main methods)		
Update of method for cereals. It now involves addition of EDTA during the extraction step for complexation		
metals that may interfere with analysis of certain analytes	- 1 0000	
Update of Method M 4.1 (Quats & Co. Obelisc R), new IL-IS and additional MRMs for Diquat	Feb 2020	V11
Update of Table 31 (Exemplary providers of isotopically labeled internal standards)		
Update of Table 33 (Water contents of selected commodities)		
Update of Chapter 6 (information on purity of N-acetyl-glufosinate D₃ standards)		
Inclusion of Thiocyanate (M1.3 and M1.4) and Desmethyl-Dimethoate (M1.3) to the scope		
Inclusion of Matrine and Oxymatrine (M 4.2) to the scope	March 2021	V11.1
Restructuring of document to improve clarity (e.g. Hints and comments applying to more than one method are merged)		
Introduction of a Chapter containing collected hints (5.6.1: Hints on analytes to avoid pitfalls)		
Thorough revision of text and elimination of errors		
Additional differentiation in solvent grades		
Extension of Apparatus list		
Revision of text for dried fruits		
Introduction of Method M1.6b, M1.7b, M 1.8, M 1.9, M 1.10, M 10, M 11		
Update of Table 42: Additional validation data	July 2021	V12
Update of Table 47: data on Melamine, Matrine, Oxymatrine, Triazole, Triazole-lactic acid,		
Triazole-acetic acid, Triazole-alanine included		
Update of Table 48: dried fruits; olives, coconut copra, dried mushrooms, kaki included; garlic updated		
New ILISs: Maleic Hydrazide $^{13}C_4$, 1, 2, 4-Triazole- D_2 , 1, 2, 4-Triazole-acetic acid- D_2 , 1, 2, 4-Triazole-alanine- D_2 , 1, 2, 4-Triazole-lactic acid- D_2		
Table 49 : data on M 1.10, M 10, M 11		
Introduction of Table 50: MS Parameters for Waters Xevo TQ-Sµ		
Revision of procedure for honey including water adjustment for honey, hints on how to use syringe / particle filters. New figure showing the procedure at a glance for honey, and validation data	March 2023	V12.1
Introduction of new measurement methods: M1.11 (on Phenomenex Luna Polar Pesticides) and M1.12 (Phenomenex Luna Polar Pesticides		
Addition of difluoracetic acid (DFA) to the scope of method M1.6b (LC-MS/MS on Waters APPC)		
Addition of difluoracetic acid (DFA), trifluoracetic acid (TFA), thiocyanate as well as of several metabolites		
of organophosphorous pesticides (diethyl phosphate, diethyl thiophosphate, O,O-dimethyl dithiophos-	D 1 2022	
phate, O,O-dimethyl thiophosphate, diethyl dithiophosphate, dimethyl phosphate) to the scope of method M1.7b (LC-MS/MS on Waters APPC)	December 2023	V12.2
Addition of difluoracetic acid (DFA) to the scope of M10 (IC-MS/MS)		
Addition of further IL-ISs		
Addition of further validation data		
Introduction of new procedure for the extraction of Diquat and Paraquat in various matrices		
Introduction of a flow chart: "QuPPe PO Method at a glance - Procedure for Diquat and Paraquat in various commodities (e.g. pulses, oilseeds, nuts, cereals, potatoes, bananas)"		
Addition of a mass transition for the determination of TFA		
Update of "How to cite"	December 2024	V12.3
Update of list of chapter 3 Chemicals	December 2024	V 12.3
Update of chapter 5.6.1 as regards Contamination Sources and the Stability of Diquat and Paraquat		
Update of Table 42, Table 44, Table 47, Table 48		
Correction of typos and syntax errors and revision of text passages		
correction of typos and syntax errors and revision of text passages		